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Abstract—We describe a system for performing SLA-driven
management and orchestration of distributed infrastructures
composed of services supporting mobile computing use cases.
In particular, we focus on a Follow-Me Cloud scenario in which
we consider mobile users accessing cloud-enable services. We
combine a SLA-driven approach to infrastructure optimization,
with forecast-based performance degradation preventive actions
and pattern detection for supporting mobile cloud infrastructure
management. We present our system’s information model and
architecture including the algorithmic support and the proposed
scenarios for system evaluation.

I. INTRODUCTION

The advent of cloud computing [1] has enabled organiza-
tions to better take advantage of the distributed architectures
for their businesses. This includes benefiting from both the
on-demand available computing, storage and network infras-
tructure resources and from the scalable distributed services
architectures. However, this comes at the cost of increased
complexity in managing such distributed computing environ-
ments, creating the need for dynamic adaptable infrastructure
management systems based on formal defined models capable
of optimizing the physical and virtual resource utilization.

Management of applications composed of multiple dis-
tributed services needs to take into consideration both re-
source load-balancing and the fact that a statically provisioned
infrastructure might not yield the best results from both
performance and costs point of view. For these reasons, both
service instances and virtual computing, network and storage
resources must be appropriately scaled in an automatic manner.

In case of cooperating cloud computing and mobile network
providers, further application and infrastructure constrains
appear due to the implicit user mobility and its implications
on quality of experience perceived by the mobile users. This
strengthens the requirement to dynamically reconfigure the
infrastructure resources according to the varying workload.
This also implies that the management system is capable of
appropriately monitor the use of software and infrastructure
resources and then of acting accordingly for preventing a
service degradation beyond the acceptable limits.

A possible way of doing such convergent computing and
network optimizations is using a cross-layer management sys-
tem ([2], [3]). By using the distributed application’s services
guaranteed states (invariants), the system could take actions
for preventing the deviation from the invariants. This allows

taking an automated approach at both services and infras-
tructure dynamic reconfiguration based on machine learning
techniques[4].

Using Service Level Agreements (SLA) management and
data prediction for system reconfiguration enables both mini-
mizing SLA violations caused by environment dynamics, and
triggering infrastructure reconfiguration actions for optimizing
resource utilization[5].

Cloud Computing has evolved to a more mature state in the
last few years. While the main research focus has been at the
datacenter and core network levels, it was assumed that edge
networks and mobile devices have the capacity to deal with
network congestions and data being accessed from different
geographical locations. Although it was a right assumption
some years ago, it is not anymore. The widespread usage
of mobile devices, together with increasing application use
of processing, storage and network resources, and new user
requirements such as accessing their data from anywhere, have
reduced the Quality of Experience (QoE) of the users and
have created major issues for the Internet Service Providers
around the world. Therefore, the need to extend the cloud core
networks and datacenters arose. With it, challenges on how
to distribute content and services between different types of
datacenters (micro datacenters1 and macro datacenters2), cache
content in network equipment and how to provide content
relocation on the fly also became topics desperately needing
solutions from the research community.

In this paper, we aim to go even further and use mobility
prediction to proactively decide when to move content and
where to move it, so that SLAs are not violated and users are
not harmful affected by their mobility or network conditions.
This raises several questions, such as: which mechanisms to
use for accurate macro mobility prediction, how to decide what
has to be cached or moved or even how to make all the process
transparent to the end user.

Given the limitations expressed by CAP (Consistency,
Availability and Partition tolerance) theorem [6] regarding
storage consistency and availability when network partitions

1Micro datacenters are medium to small-scale deployments of server
clusters across a certain geographic area, which may cover locations ranging
from a city to a small rural area as part of the mobile network infrastructure.

2Macro datacenters are the standard large-scale computing farms that are
usually deployed and operated at a few strategically selected locations.



are present, we describe a SLA-driven architecture for max-
imizing the combination of consistency and availability in
a mobile cloud context. We extend the work previously de-
scribed in [5] and [7] by combining a machine learning ap-
proach to distributed resource provisioning with a SLA-driven
approach at distributed services and resources orchestration.

This paper is structured as follows: Section II presents
the related research topics, Section III describes the environ-
ment constraints and reference scenario in which our system
operates, Section IV presents the system’s components and
their interactions, Section V discusses the proposed system
evaluation, and finally, Section VI draws conclusions.

II. BACKGROUND AND RELATED WORK

This section discusses relevant work in the areas of dis-
tributed cloud-based applications and approaches to infrastruc-
ture resource orchestration and management.

A. Distributed Cloud-based Applications

Cloud-based applications [1] are either proprietary software
deployed on an Infrastructure as a Service (IaaS) cloud,
applications built within a Platform as a Service (PaaS) or
services offered by a Software as a Service (SaaS) provider.
There are various motivations for adding distributed properties
to cloud-based applications, including redundancy, load bal-
ancing, parallelization for performance increase or workflow,
ownership and control constraints that force workloads to be
placed in separate locations.

Distributed cloud-based applications consist of multiple
network-connected workloads under the administration of a
single user. Each workload may be assigned to a virtual
machine, and each virtual machine might be exclusively or
partially allocated a set of CPU cores, memory and storage
in the cloud infrastructure. Furthermore, the workloads can
be connected by application-level messaging using network
overlays, virtual networks or physical ports configured to han-
dle selected traffic. The distribution can be considered within
a single or multiple datacenters, where different deployment,
resource management and connectivity challenges arise.

Storage resources in cloud environments are typically ac-
cessed over the network, either directly or indirectly through
a management system, such as databases or object storage
systems. The cloud storage resources are usually distributed,
fault tolerant, versioned and might be consistent, although
eventually consistent [6] storage systems exists.

Various solutions exist for deployment specification and
automation, such as described by Juve et al. [8] and Vecchiola
et al. [9], but there is still a need for solutions to coordinating
the scaling and resource usage optimization throughout the
lifecycle of these complex cloud applications.

B. Mobile Cloud Computing

Mobile Cloud Computing [10] refers to the access of cloud
computing-running services from mobile devices. Typical ser-
vices being accessed from the mobile devices are multimedia
services, along with enterprise services. The inherent mobility

and limited computing resources of the mobile devices can
leverage on the elastic cloud resources, as described further.

Follow-Me Cloud is an innovative concept that was pre-
sented by Bifulco et al. [11] as one way of increasing scala-
bility of a mobile cloud management system. The key concept
aims to support mobile users: a user moves and its data moves
along to ensure the same QoE. However, this functionality
involves complex questions that need to be tackled.

C. SLA Management in Cloud Environments

SLA management involves monitoring information about
resource capabilities, availabilities and performance during op-
eration, in order to execute actions for services to be delivered
according to guarantees agreed with customers. There is then
a need for mixing historical, predictive and live information
about resources for dynamic re-planning and provisioning of
resources. Further information includes the current load on
different resources and the criticality of the service request to
be handled. Given the on-demand model of cloud computing
environments, there is an increased need for optimization of
handling service requests and assigning resources based on
multiple objectives. These multiple objectives are derived from
the set of objectives in multiple SLAs and operational policies,
such that conflicts and contentions will arise in an environment
that allows concurrent services and service users.

Garg et al. [4] uses admission control and VM scheduling as
their approach to SLA management. They use Artificial Neural
Networks for predicting CPU utilization for making decisions
about access control and starting/stopping VM instances.

Antonescu et al. [7] presents an architecture for performing
cloud services deployment and scaling orchestration driven by
SLAs together with with predefined infrastructure actions. We
are extending that work in the context of mobile cloud with
an inference and prediction engine capable of orchestrating
actions for supporting Follow-Me Cloud concept.

Bobroff et al. [12] describes a system for dynamic place-
ment of VMs considering resource utilization forecasting and
SLA violation minimization by means of VM migration. Our
works differs from their approach by extending the range of
SLA-guaranteed infrastructure actions and introducing a more
complex inferencing engine for predicting users mobility.

D. Outdoor Mobility Models

When it comes to mobility models and ways of representing
outdoor mobility, many proposals exist in the literature. Bai et
al. [13] provide a comprehensive overview of such proposals
and classify them by types. This classification is made mainly
by analyzing a set of key characteristics in detail:

• Random-based mobility models: the movement of a mo-
bile node is random and without restrictions. Examples of
these are the Random Waypoint Model, the Random Walk
Model and the Random Direction Model. Each of them
brings improvements by taking in account other factors
and behaviors which are not human like.

• Models with Temporal Dependency: the movement of a
mobile node is likely to be affected by its movement



history. Well know models are the Gauss-Markov Model
and the Smooth Random Model. The second brings
improvements over the first, as it also makes changes
in speed and direction smoothly to prevent unrealistic
movement behaviors.

• Models with Spatial Dependency: The mobile nodes tend
to travel in a correlated manner. This can be achieved
by using a reference point (leader node) for a group
of moving nodes (Reference Point Group Model) or by
having the nodes travel in a cooperative manner (Spatially
Correlated Model).

• Models with Geographic Restriction: the movement of
nodes is bounded by streets, freeways or obstacles.
Known implementations are the Pathway Model and the
Obstacle Model which restrict the movements by paths
or by obstacles in the paths, respectively.

Even though these models are accurate enough to test many
mobility mechanisms, to run our tests and gather real world
valid conclusions of mobility prediction by learning we need to
carry out our study with additional and more accurate mobility
data. This more accurate data can be obtained using traces
from real mobility, which will be presented later in this paper
in Section V.

E. Mobility Prediction with Artificial Intelligence

There exist several techniques to determine prediction of a
certain event on a timeline. These can be of two major types:
statistical and artificial intelligence based. From the latter,
recurrent neural networks are proven to be efficient when
dealing with multi-step time series predictions, because they
include internal dynamic memory, which grants a dynamic
mapping of inputs to outputs.

These are the first assumptions of Kaaniche et al. [14] and
Capka et al. [15], which aim to provide mobility prediction to
optimize routing in Wireless Ad Hoc Networks and common
Wireless Networks, respectively. They both use a recurrent
and multi-layer neural network with three layers arranged in
a feed forward fashion, together with a learning algorithm
with an error function which is minimized using BPTT (Back
Propagation Through Time) algorithm to train the network
by adjusting the weights. Also, both their evaluations clearly
shows that accurate prediction levels may be achieved if
the architecture and learning algorithms are chosen correctly
and the network is properly trained to a specific scenario.
However, these approaches intend to improve routing, hence
we need to adapt and improve it to deal with data relocation
and resources allocation in a number of different mobile
scenarios. Also, both obtain great simulation results when
testing their implementations using mobility models such as
the described before in this paper. But this does not validate
the implementations for real world usage as we intend in this
paper, which will require proper adaptions later described in
Section IV.

III. DISTRIBUTED INFRASTRUCTURE AND APPLICATION
OPTIMIZATION

The core concepts of our solution for distributed application
orchestration, SLA management, provisioning, monitoring and
infrastructure optimization are presented in this section.

A. Reference Scenarios

We consider a distributed computing environment composed
of multiple pools of configurable computing resources (e.g.
servers and storage) connected by high-speed network con-
nections. The considered environment might spawn across
multiple network domains.

The computing and storage resources are shared between
regular users and mobile network operators. The mobile
network operators consider multiple usages for the cloud
infrastructure. They are providing to their users computational
intensive services, such as support for secure communica-
tion services (e.g. secure messaging services), which can be
accessed from the users’ mobile terminals. These services
are dynamically instantiated in various regions as the users
demand for the secure services varies. This creates the basis
of maintaining a balanced and cost effective distribution of
services throughout the computing infrastructure.

Another scenario considered by the mobile network op-
erators is offering access of high-quality, high-bandwidth
multimedia services, such as video streaming or video confer-
encing. In case of video streaming, the storage and computing
resources need to be carefully provisioned for ensuring that
a proper level of quality of experience is maintained for the
users base. This implies that based on access patterns, the
video resources are replicated though the infrastructure for
minimizing the network congestion and assuring an optimal
access latency. Also, for the purpose of maintaining the quality
of experience for users with mobile devices, on-the-fly video
processing might be required (e.g. downscaling the video for
matching various resolutions of the mobile users’ devices).
These two requirements imply that a careful orchestration of
both storage and computing resources management needs to
be done, while maintaining a guaranteed level for the quality
of service and quality of experience for the users.

Considering that the mobile users are inherently accessing
the network services while on the go, adds a new dimension to
the infrastructure management requirements, of assuring that
enough computing resources are made available for handling
the users requests, without exceeding a maximal delay and
without overloading the fixed network infrastructure connect-
ing the mobile base stations to the actual computing centers.

In the context of the mentioned scenarios, it becomes
obvious that a statically provisioned, tailor-made infrastruc-
ture, would lead to over-provisioning and sub-optimal use of
resources, while increasing the energy costs associated with
running the infrastructure. Expressing the quality of service
guarantees in a measurable form, such as with Service Levels
part of SLAs, would allow for a better visibility into the state
of the network and computing infrastructure, while facilitating



both a reactive and proactive elastic scaling of resources as the
infrastructure utilization levels vary.

Having the basic blocks for observing the quality of ser-
vice and experience throughout the infrastructure allows for
detection of services and resources usage patterns, which,
in turn, enable taking proactive actions for ensuring that the
guaranteed service levels are not violated as a consequence of
changing conditions in the service utilization levels. This also
enables making energy savings due to a better sizing of active
computing resources, combined with resource access planning.
As TCP throughput depends on the round trip time [16] is also
an important argument to deploying storage resources closer
to the users.

IV. PROPOSED SYSTEM ARCHITECTURE

In this section we describe an extension to our existing
SLA-based management system for distributed applications
and infrastructure handling [7] for supporting storage resource
management in the context of mobile network access. We
present the components, their interactions and machine learn-
ing techniques used for forecasting mobile users locations and
applications state in order to determine the appropriate actions
to take for maintaining the SLA-invariants.

We define a new subsystem for handling the requirements of
managing mobile accessed network storage resources, called
Proactive SLA Infrastructure Manager. This new component,
described in more detail in Section IV-B, is responsible for
enabling proactive infrastructure management support. It con-
tains the processing logic required for detecting user mobility
patterns and for correlating these patterns with SLA-defined
actions for maintaining the guaranteed quality of service and
experience, as defined in the SLAs. Next, we present the
information model required for supporting this subsystem.

A. Information model

We extend the SLA-centric information model described in
[7] for modeling the dependencies between the physical and
virtual resources’ state, users’ experience and SLA guaranteed
states and dynamic actions.

The previously defined information model is centered on
the SLA concept composed of guaranteed states and actions.
The guaranteed states are expressions which refer to particular
values of different metrics associated with resources and
the services using those resources. The guaranteed actions
are infrastructure reconfiguration actions, which should be
executed when certain conditions called triggers become valid.
The purpose of these actions is to prevent the invalidation of
the SLA guaranteed states.

The information model also contains a view of the physical
and virtual infrastructures. The physical infrastructure contains
the relations between the physical computing, storage and
network resources, while the virtual infrastructure contains
the relations between the services running on the physical
infrastructure. Both the physical and virtual resources are
associated with monitoring metrics, which are then used for

describing the SLAs’ guaranteed states and actions’ trigger
expressions.

The actual state of the infrastructure resources is maintained
as series of time and location bound monitoring metric values.

While this model is sufficient for driving a reactive control
system, it is not enough for driving a proactive control system
which learns which is the best infrastructure configuration
state and network topology and then acts for ensuring that the
identified configuration is reached. For supporting this feature
we also define two components: a predicted resources’ state
component, which should hold the forecasted values of the
monitoring metrics, and a predicted user mobility component
that stores users past mobility and predicted future positions.
This will enable scheduling of future actions based on the
predicted resources state and SLA guaranteed states, so as
based on the way the user moves along the network.

The predicted user mobility component should be fed with
data from the previously described monitoring system, which
needs to be converted into a format compatible with the
prediction mechanisms and also divided by geographically
divided zones in order to make more accurate predictions. We
envision that the input format consists on a set of factors such
as speed, heading, relative location in the world and likeliness
to move (numeric, based on context. eg. user is at the airport).
These together with the knowledge already in the dynamic
memory of the predicting mechanisms and the division by
geographical zones are in our opinion the needed parameters
to determine a more accurate prediction, which in terms of
output consists on a predicted location for the user. Moreover,
using the error function of the mechanisms and establishing
a level of confidence, we can define a threshold to decide if
actions are needed or the prediction should be ignored.

Given the requirements of the ’follow-me-cloud’ scenario,
we also consider adding a new entity to the information
model: the mobile users accessing the infrastructure provided
services. This implies that network and possibly geographical
location information needs to be associated with the users,
for determining how the resources’ location and network
configuration affects the level of service experienced by the
users. For fully supporting the user location awareness, the
information model is also extended with time-bounded access
patterns information and forecasted access patterns. Also, the
Users model contains information about the values for the
quality of service and quality of experience, from the mobile
user’s point of view.

Next, we show how this model is used for performing the
infrastructure management functions.

B. Overall Component Architecture

In this section we give an overview of the important system
components and their interactions, as depicted in Figure 1.

As described in [7], the SLA management system operates
in a reactive manner, by processing the monitoring data on
resources state and then selecting the appropriate actions for
maintaining the SLA defined guaranteed states. We extend this
mechanism with a proactive management subsystem (PSM)



Reactive SLA Infrastructure Manager Information Model

SLAs Infrastructure state

Actual Forecasted

Services state

Actual Forecasted

ActionsStates

Users
Location QoS

SLA Rule Processor

Proactive SLA Infrastructure Manager

Forecaster

Pattern Detector

Optimizing Engine

Scheduler

SLA Health Checker

Resource Allocator

Application & Service Manager QoEPatterns

Execution Engine

Action Scheduler

Action Aggregator

Action Monitor

Probes

Actuators

Infrastructure

Fig. 1. System Model

for optimizing infrastructure configuration using forecasting
and pattern detection mechanisms. The main components of
the PSM subsystem are, as described in Fig. 1: the monitor-
ing metric prediction engine (Forecaster), resource utilization
Pattern Detector, Optimization Engine and Scheduler.

The system operates in an autonomous control loop, being
driven by the SLA processing engines. The initialization is
performed by registering the possible services along with their
SLA profiles containing the SLA guaranteed actions, states
and monitoring metrics in the Information Model. After the
population of the infrastructure model by the Infrastructure
Discovery component, the system is ready for receiving service
deployment requests. Once a distributed application composed
of different services has been deployed, the system begins
the reactive infrastructure management process by identifying
the suitable registered infrastructure actions at the SLA Rule
Processor component, using the registered SLA.

The prediction engine provides forecasts of the resources’
monitoring time series and user mobility. The Pattern Detector
component processes the previous gathered resources’ state
along with its forecasts to extract utilization patterns in the
network access of the services and storage resources. It also
processes the users’ real mobility and predicted mobility, in
order to update the prediction mechanisms and make sure their
predictions are as accurate as possible. The algorithms used
by these components are described in Section IV-C.

The Optimization Engine then evaluates the forecasted met-
rics and utilization patterns against the SLA guaranteed states
and actions’ preconditions for determining whether certain
corrective actions are required for preventing SLA violations.

The execution of the selected infrastructure optimization
actions is then scheduled by the Scheduler component, taking
into consideration the time horizon of the forecasts and the
periods of the detected patterns.

The actual infrastructure actions are executed by the Execu-
tion Engine (EE) using information from the action templates
database. The EE schedules the execution of the actions based
on their dependencies using the Action Scheduler component.
Multiple actions related to storage optimization are aggregated
in the Action Aggregator component for ensuring that only sig-
nificant changes are performed in the physical infrastructure.

The actual execution is performed using the various Actuators,
which are implementing different management APIs. Finally,
the actions’ execution is monitored though the Action Monitor.

The control loop is closed through the monitoring sub-
system, which is recording the resources’ state, used then
for evaluating the SLAs at the SLA Rule Processor. The
monitoring data along with the SLAs evaluation outcomes are
recorded in the information model.

The system orchestrates multiple infrastructure optimization
actions using three continuous phases throughout the lifetime
of an application

1) Analysis gathering of monitoring data and evaluation
of rules to determine if triggers have been reached and
actions need to be performed for satisfying SLAs.

2) Scheduling determination of when determined actions
need to be performed given the targets

3) Execution mapping the higher-level actions stated in
rules to specific operations. This is more challenging in a
heterogeneous environment as the specification of rules
needs to be decoupled from the operational semantics
of the underlying infrastructure.

C. Resource Utilization Prediction and Pattern Detection

The Resource Utilization Prediction component is responsi-
ble for forecasting the monitoring time series. It takes its input
from the Monitoring component in the form of time series
associated with each SLA metric of the registered services
and infrastructure resources. The data is being processed by
multiple prediction algorithms, such as Winter-Holts triple
exponential forecasting, autoregressive integrated moving av-
erage (ARIMA) and exponential smoothing state space model
with Box-Cox transformation, ARMA errors, Trend and Sea-
sonal components (BATS). The actual forecasting algorithms
execute in R Statistical Computing engine[17].

For detecting patterns in storage and network accesses
the system will use statistical analysis of monitoring data,
such as averaging over predefined time intervals (e.g. one
hour), combined with forecasting. A small relative error of the
forecasted time series with regards to the actual monitoring
data would indicate that the observed variation represents a
utilization pattern.

To predict user mobility, we intend to user neural networks
based on work from the literature described in the Related
Work section. These neural networks will eventually need
validation, which will in fact happen after their definition and
training. However, validation tests ran with a certain mobility
model may be excellent and, at the same time, fail redundantly
with another. And we also have to consider that these models
are in fact very predictable, mostly because they lack of real
world randomness and try to tackle a specific type of mobility
while the world is composed of many types simultaneously. In
our approach, we intend to validate our results by using real
world traces that can be considered real world validation tests
even though they are used for simulation purposes.



D. SLA-Driven Infrastructure Optimization

We are considering multiple possible infrastructure opti-
mization actions. In the case of Follow-Me Cloud scenario,
such actions are staring, migrating and stopping VM, as well
as replication of storage resources.

In order to trigger such actions, information from multiple
monitoring sources is used, in order to detect suboptimal
performance of the infrastructure. Example of metrics sup-
porting such decisions are the storage access rate, network
access rates, latency and throughput, service waiting queue
lengths, service processing times. These metrics would then
be correlated with application and requests identifiers for
creating user profiles, which would create the inputs for pattern
detection components.

V. DISCUSSION

For the system evaluation and validation we propose a three
steps process, as described below. First, we will consider
three scenarios in which multiple users are accessing storage
resources, with and without requiring data processing (e.g.
multimedia transcoding). Next, for each scenario we will
generate utilization traces, simulating multiple user accesses.
In parallel, we will gather actual monitoring traces from
production systems and from small-scale real deployments.
Using this combination of simulated and real-world data we
will test the system scalability, stability and ability to adapt to
varying infrastructure conditions.

We will train the neural networks both with mobility mod-
els, as described in Subsection II-D, and real-world traces,
considering that the latter will also be used to validate the
system (using a separate set). The challenge for validating the
system with real-world data is obtaining a good representative
set of human outdoor mobility traces. For this we will use
vehicles mobility traces from taxi cabs monitoring data in San
Francisco, USA [18]. On-foot human mobility traces will be
obtained from five different sites [19]. With such represen-
tations of outdoor human mobility, we will complement the
system’s simulation, hence becoming closer to validate our
proposal.

Finally, we envision a set of parameters that can be
measured to evaluate our proposal. Namely, the prediction
accuracy (%) gathered by comparing past predictions with
real mobility data, the latency and jitter to access the content
(ms) provided by the end users devices and also, for video
streaming, two QoE metrics - Structural SIMilarity (SSIM) and
Video Quality Metric (VQM). These last metrics can too be
provided by the end users devices and feeded to the monitoring
system.

VI. CONCLUSIONS

We described a system for performing SLA-driven man-
agement and optimizations of cloud computing infrastructures
with a focus on supporting mobile cloud scenarios. We focused
on a Follow-Me Cloud scenario involving optimization of
distributed, network-connected storage resources and com-
puting services. We combined a SLA-driven approach to

infrastructure optimization, with forecast-based performance
degradation preventive actions and pattern detection for sup-
porting mobile cloud infrastructure management. We presented
our system’s information model and architecture including the
algorithmic support and the proposed scenarios for system
evaluation. Finally, we discussed about system validation plan
and possible challenges for system evaluation.
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