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Abstract. We propose simple and computationally efficient wireless
channel modeling algorithm. For this purpose we adopt the special case
of the algorithm initially proposed in [1] and show that its complexity
significantly decreases when the time-series is covariance stationary bi-
nary in nature. We show that for such time-series the solution of the
inverse eigenvalue problem returns unique transition probability matrix
of the modulating Markov chain that is capable to match statistical
properties of empirical frame error processes. Our model explicitly takes
into account autocorrelational and distributional properties of empiri-
cal data. We validate our model against empirical frame error traces of
IEEE 802.11b wireless access technology operating in DCF mode over
spread spectrum at 2Mbps and 5.5 Mbps bit rates. We also made avail-
able the C code of the model as well as pre-compiled binaries for Linux
and Windows operating systems at http://www.cs.tut.fi/˜moltchan.

1 Introduction

The grow of the Internet and increase in the number of users that wish to access
Internet services ’anytime and anywhere’ stimulate development of wireless ac-
cess technologies. Consequently, air interface is expected to be an integral part
of next-generation telecommunications networks.

Due to movement of a mobile user, the propagation path between the trans-
mitter and a receiver may vary from simple line-of-sight (LOS) to very complex
ones. To estimate performance of wireless channels, propagation models are often
used. Basically, we distinguish between the large-scale and small-scale propaga-
tion models (see [2] for review). The former models focus on predicting the
received local average signal strength over large separation distances between
the transmitter and a receiver and do not take into account rapid changes of the
received signal strength. As a result, they cannot be effectively used in perfor-
mance evaluation studies. Propagation models characterizing rapid fluctuations
of the received signal strength over short time duration are called small-scale
propagation models. Due to implicit incorporation of small-scale mobility, these
models provide better characterization of the received signal strength.



A major consequence of propagation characteristics is that bit and frame
errors of wireless channels are usually not independent but correlated [2–4].
Techniques such as forward error correction (FEC) and automatic repeat request
(ARQ) may allow to recover from these errors. To study performance of these
techniques wireless channel models at the data-link layer are needed.

Recently, it was shown that the frame error process of the wireless channels
can be sufficiently well represented by doubly-stochastic Markov modulated pro-
cess [5–7]. Such a model provides a useful trade-off between complexity of the
model and accuracy of fitting to statistical data. However, modeling algorithms
developed for this model do not explicitly take into account the second-order
properties of statistical data leading to incorrect representation of the memory
of the frame error process (see [8, 9] among others).

In this paper we develop simple and computationally efficient model that
is capable to capture important statistical characteristics of frame error traces.
Based on statistical analysis we show that the (normalized) autocorrelation func-
tion (NACF) of frame error traces exhibits nearly geometrical behavior and ap-
proximate such a behavior by a geometrically distributed component. To find
a suitable Markovian model approximating a given NACF, we formulate and
solve the inverse eigenvalue problem, i.e. we find such a Markov process that its
transition probability matrix posses a predefined eigenvalue approximating be-
havior of empirical NACF. We also show that there is unique Markov modulated
process approximating histogram of relative frequencies of the frame error trace
and empirical NACF. The associated fitting algorithm is extremely simple, fast,
and computationally efficient. We believe that the proposed model is also suit-
able for frame error observations on different technologies. We made available
the C code of the proposed model as well as pre-compiled binaries for Linux and
Windows operating systems at http://www.cs.tut.fi/˜moltchan.

Our paper is organized as follows. Background and related work are consid-
ered in Section 2. Setup of experiments and statistical characteristics of frame
error traces are analyzed in Section 3. The proposed model is formulated in
Section 4. Algorithm and practical implications are considered in Section 5. In
Section 6 numerical examples are given. Conclusions are drawn in last section.

2 Background and related work

There was a lot of effort aimed on developing a suitable model for frame errors
at the data-link layer. In [9], to capture statistical characteristics of error traces,
authors carried out statistical analysis of IEEE 802.11b frame error traces and
used a number of models, including hidden Markov model (HMM), and higher-
order Markov chains. They also showed that FSMC may fail to model frame
error traces accurately. Statistical analysis of frame error traces was also carried
out in [10] and that was the first paper where dependence between successive
frame errors has been considered in terms of NACF. It was suggested that with
increasing of the number of states, first-order Markov chains are capable to cap-
ture autocorrelation properties of frame error traces. Particularly, in [8] a 512-



states first-order Markov chain was introduced to model IEEE 802.11b frame
error traces. Due to a large number of states, such models are only suitable for
simulation studies of information transmission over wireless channels. In a num-
ber of papers [5–7] Zorzi and Rao have shown that two-states Markov modulated
model is sufficient to capture frame error statistics at the data-link layer.

In this paper we propose a model for IEEE 802.11b frame error traces. We
found our traces to be covariance stationary ones and explicitly capture statisti-
cal characteristics including empirical ACF and probability distribution function
(PDF). The proposed approach is not only applicable to frame error traces but
can be used to model bit error traces of wireless channels as long as the empirical
ACF can be approximated by geometrically distributed component.

3 Experiments and statistical data

3.1 Setup and background information

In this study we use IEEE 802.11b frame error traces available from [11]. Setup
and background information related to collection of traces are given in [8, 10].
In this subsection we review major details that are important for our work.

According to experiments, there were three nodes, two mobile nodes and
access point (AP), involved in communication as shown in Fig. 1. Experiments
were carried out in office environment. The server and AP were nearby each other
within a line-of-sight (LOS). The client and AP were in ’no LOS’ environment as
there was a wall between them. The communication between AP and client was
of interest. All nodes involved in communications used distributed coordination
function (DCF) of IEEE 802.11.

Server ClientAP

Fig. 1. Configuration of the testbed for collecting error traces.

The communication was as follows. According to IEEE 802.11, one way trans-
fer of data packet involves Request To Send (RTS) - Clear To Send (CTS) - Data
(DATA) - Acknowledgement (ACK) exchange of packets. Every second the server
transmitted a data packet of 512 bytes in length to AP using RTS-CTS-DATA-
ACK exchange. Upon receiving a packet, AP transmitted it to the client using
RTS-CTS-DATA-ACK exchange. In the course of experiments retransmission of
incorrectly received packets was disabled, however, normal procedures for IEEE
802.11 DCF contention access were used [12]. Experiments were carried out us-
ing direct sequence spread spectrum (DSSS) on 2Mbps and 5.5Mbps bit rates



[13]. For each rate, three experiments were carried out. In the course of each
experiment, error traces were collected on bit, byte, and frame levels. In what
follows, we are interested in frame error traces.
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Fig. 2. Exchange of packets between the server and the client via AP.

It is important to note that no errors were observed between the server
and the AP. This is due to LOS environment and absence of interfering nodes.
Indeed, time required to transfer 512 bytes packet from the server to AP is less
than 0.01s. for 2Mbps bit rate. Therefore, in this testbed frame transmission
from the AP to the client can be seen as synchronous in nature, e.g. exchange of
RTS-CTS-DATA-ACK between the AP and the client always starts at the same
time, separated by a second as illustrated in Fig. 3. Note that the client still
provided a feedback in terms of correct and incorrect DATA packet reception in
ACK packets.
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Fig. 3. Exchange of packets between the AP and the client.

3.2 Frame error traces

Frame error trace is essentially a sequence of successive events of correct and
incorrect frame reception at the data-link layer. To use theory of stochastic pro-
cesses, we redefine the frame error trace to be a sequence of random variables.
We assume that ’1’ represents an incorrectly received frame and ’0’ represents
a correctly received frame. Successive realizations of this random variable com-
pose frame error process {W [E](n), n = 0, 1, . . . }, {W (n) ∈ {0, 1}}. Using the



the ’run’ test [11] we found that our frame error traces can be considered as
covariance stationary ergodic ones. Therefore, we can compute all important
statistics using only one realization. We use f [E](1) to denote probability of
frame error as seen by times-averages. Correspondingly, (1 − f [E](1)) denotes
probability of correct frame reception. We concentrate our attention on two sta-
tistical characteristics of frame error traces. These are PDF and NACF of the
frame error process. These characteristics provide sufficient information regard-
ing the stochastic nature of covariance stationary binary processes.

Let us denote by {W [E]
x (n), n = 0, 1, . . . }, W

[E]
x (n) ∈ {0, 1} the empirical

frame error traces, where x ∈ {2, 5.5} designates the rate to which the trace
corresponds. Histograms of relative frequencies of frame error traces were found
to be as follows

f
[E]
5.5 (i) =

{
0.246, i = 1
0.754, i = 0

, f
[E]
5.5 (i) =

{
0.117, i = 1
0.883, i = 0

,

f
[E]
2 (i) =

{
0.096, i = 1
0.904, i = 0

, f
[E]
2 (i) =

{
0.053, i = 1
0.947, i = 0

. (1)

It is known that one-dimensional statistical distribution may not completely
characterize the frame error process. Indeed, frame errors are intended to group
in bursts rather than be distributed evenly in time. Such a grouping may not
allow satisfactory data-link error concealment. As a result, it significantly affects
quality provided to higher layers. Grouping of errors can be described by NACF.
Empirical NACFs of frame error traces for 5.5Mbps, and 2Mbps rate traces are
shown in Fig. 4, where i is the autocorrelation interval and K [E](i) is the value
of NACF for lag i.
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Fig. 4. NACF for 5.5Mbps, and 2Mbps rate traces.

Observing Fig. 4 one may note that NASFs decrease geometrically fast for
small lags (up to i = 2 ∼ 3). For larger i the decrease is likely not geometrical.
However, values of K [E](i) for i > 2 ∼ 3 are significantly smaller that those for
i = 1, 2, 3 allowing to assume that the memory of the process is almost fully
determined by first several values of K [E](i).



4 The model

To model frame error traces we propose to use doubly-stochastic Markov mod-
ulated model with two states of the modulating Markov chain. According to
this model, for each pair of states of the modulating Markov chain we may
define different probability distribution function. These functions are not lim-
ited to analytical ones, but can be general, including arbitrary histogram of
relative frequencies. NACF of such a process is geometrically distributed and
may produce good approximation of empirical NACF. This process is known as
discrete-time batch Markovian arrival process (D-BMAP) in traffic modeling and
hidden Markov model (HMM) in signal processing. We refer to such a process
as discrete-time batch Markovian process (D-BMP).

4.1 Discrete-time batch Markovian process

Let us briefly review important characteristics of D-BMP. Assume a discrete-time
environment, i.e. time axis is slotted, the slot duration is constant and given by
∆t = (ti+1 − ti), i = 0, 1, . . . . Let {W (n), n = 0, 1, . . . }, W (n) ∈ {0, 1, . . . }, be
D-BMP. According to it, the value of the process is modulated by a discrete-
time Markov process {S(n), n = 0, 1, . . . }, S(n) ∈ {1, 2, . . . ,M}. Let D be its
the transition probability matrix. We define D-BMP process as a sequence of
matrices D(k), k = 0, 1, . . . , containing probabilities of transition from state to
state accompanied by a value of the process.

Let the vector G = (G1, G2, . . . , GM ) be the mean vector of D-BMP, where
Gi =

∑M
j=1

∑∞
k=0 kdij(k), i = 1, 2, . . . ,M . The mean process of D-BMP is de-

fined as {G(n), n = 0, 1, . . . } with G(n) = Gi, while the Markov chain is in the
state i at the time slot n. The ACF of the mean process is given by:

R[G](i) =
∑
l,l �=1

φlλ
i
l, i = 1, 2, . . . , (2)

where φl = π(
∑∞

k=1 kD(k))glhl(
∑∞

k=1 kD(k))e, λi is the ith eigenvalue of D,
gl and hl are left and right eigenvectors of D, and e is the vector of ones. When
D-BMP is used to model binary process (that is W (n) ∈ {0, 1}) with only two
states of the modulating Markov chain (2) reduces to

R[G](i) = φλi, (3)

where φ is the variance of the process, λ is the non-unit eigenvalue.1 NACF
is then K [G](i) = λi. It is clear that the ACF of the mean process of D-BMP
exhibits geometrical decay. Such a behavior may produce fair approximation of
empirical NACFs exhibiting geometrical decay for small lags.

1 Transition probability matrix of the irreducible, aperiodic discrete-time Markov
chain always posses a unit eigenvalue that is referred to as simple eigenvalue.



In general, probabilistic characteristics of {W (n), n = 0, 1, . . . } and {G(n), n =
0, 1, . . . } are different. For mean process of binary D-BMP the following holds

E[G] = E[W ], φ[G] = φ[W ], K [G](i) = K [W ](i), i = 1, 2, . . . , (4)

where the first property holds for any D-BMP, the latter hold for binary D-BMP.
Without affecting abovementioned autocorrelational properties we allow our

D-BMP process to have probability functions that depend on the current state
only. In this case, D(k), k = 0, 1, . . . , have the same elements on each row. It is
important that this process still has ACF distributed according to (2).

4.2 Approximation of the empirical ACF

To approximate the empirical NACF of the frame error traces we use the method
proposed in [1, 14]. Particularly, we minimize the error of approximation γ by
varying the value of coefficient λ according to

γ =
1
i0

i0∑
i=1

(
K [W [E]](i) − λi

K [W [E]](i)

)
, K = 1, 2, . . . (5)

where i is the lag, i0 is the lag up to which the NACF have to be approximated,
and K [W [E]](i) is the value of empirical NACF for lag i. Note that NACF is used
instead of ACF in (5). It is easy to see that λ = K [E](1), γ = 0, for i0 = 1.
Values of λ obtained for frame error traces for different i0 are shown in Table 1.

Table 1. Approximation of empirical NACFs by λ for different i0.

Trace/i0 2Mbps 2Mbps 5.5Mbps 5.5Mbps

λ γ λ γ λ γ λ γ

i0 = 1 0.256 0 0.353 0 0.415 0 0.305 0

i0 = 2 0.189 0.038 0.423 0.029 0.466 0.011 0.328 0.004

i0 = 3 0.097 0.762 0.477 0.086 0.524 0.089 0.368 0.112

i0 = 4 0.098 0.819 0.516 0.118 0.569 0.148 0.388 0.269

i0 = 5 0.098 0.856 0.545 0.149 0.603 0.218 0.397 0.395

It is known that the transition probability matrix of irreducible aperiodic
two-state Markov chain posses a single non-unit eigenvalue. In what follows, λ
is used as this eigenvalue. One should note that more than a single coefficient
λ can be used to approximate empirical NASF. However, with increasing of the
number of coefficients approximating empirical NACF, the number of eigenvalues
increases, and so does the state space of the modulating Markov chain. When K
coefficients are used, the number of states of the modulating Markov chain, N , is



between2 (K+1) and 2K . However, it is always wise to keep the complexity of the
model as low as possible. Therefore, the state space of the modulating Markov
chain should be minimized. From this point of view, usage of a single geometrical
term provides the best trade-off between the accuracy of the approximation and
the simplicity of the model.

4.3 Approximation by mean process

The construction of Markov modulated process from statistical data involves
the inverse eigenvalue problem. It is known that the general solution of this
problem does not exist. However, it is possible to solve it when some limitations
on eigenvalues and resulting process are set. Our limitation is that the non-unit
eigenvalue should be located in (0, 1] fraction of 0X axis. Note that −1 ≤ λ ≤ 1
is fulfilled since all eigenvalues of transition probability matrix of irreducible
aperiodic Markov chain are located in [−1, 1] fraction of 0X axis. Finally, 0 <
λ ≤ 1 must be fulfilled by the solution of the inverse eigenvalue problem.

Let {W (n), n = 0, 1, . . . }, W (n) ∈ {0, 1}, be the D-BMP process modeling
a frame error trace, and {S(n), n = 0, 1, . . . }, S(n) ∈ {1, 2} be its modulating
Markov chain. Let {G(n), n = 0, 1, . . . }, G(n) ∈ [0, 1] be the mean process of
{W (n), n = 0, 1, . . . }.

Stochastic properties of {G(n), n = 0, 1, . . . } are completely characterized by
a triplet (E[W ], φ, λ), where E[W ] is the mean of the process, φ is the variance,
and λ is the non-unit eigenvalue of the modulating Markov chain. Particular
values of (E[W ], φ, λ) can be related to parameters of {G(n), n = 0, 1, . . . } using
the following equations ⎧⎪⎪⎨

⎪⎪⎩
E[W ] = αG2+βG1

α+β

λ = 1 − α − β

φ = αβ
(

G1−G2
α+β

)2
, (6)

where G1 and G2 are means in states 1 and 2 respectively, α and β are probabil-
ities of transition from state 1 to state 2 and from state 2 to state 1 respectively.

Observing (6) one may note that in order to completely parameterize the
mean process of SD-BMP, we must provide four parameters (G1, G2, α, β). If we
choose G1 as a free variable with constraint G1 < E[W [E]] to satisfy 0 < λ ≤ 1,
we can determine G2, α, and β from the next set of equations⎧⎪⎨

⎪⎩
G2 = φ[E]

E[W [E]]−G1
+ G1

α = (1−λ)(E[W ]−G1)
G2−G1

β = (1−λ)(G2−E[W ])
G2−G1

, (7)

where φ[E] is the variance of the process, E[W [E]] is the mean of the process, λ is
the coefficient determined at the previous step and used as a non-unit eigenvalue.
2 Particular value of N depends on the solution of the inverse eigenvalue problem.



From the first equation of (7) one may conclude that there should be an
infinite number of processes matching (E[W [E], φ[E], λ). However, there is an
additional restriction on the choice of G1. Let us now identify a distinctive
feature of the proposed matching method that uniquely identifies the process we
are looking for and simplifies the fitting procedure. Consider the first equation
in (7) and rewrite it using φ[E] = E[W [E]] − (E[W [E]])2

G2 =
E[W [E]] − E[W [E]]G1

E[W [E]] − G1
. (8)

To represent the frame error trace, SD-BMP {W (n), n = 0, 1, . . . } must be
defined on the state space {W (n) ∈ {0, 1}}. Thus, the value of G2 must be equal
or less than 1 for any state of {S(n), n = 0, 1, . . . }. To identify what values of
G1 must be chosen to satisfy Gi ≤ 1, i = 1, 2, consider (8) with extreme cases,
G1 → E[W [E]] and G1 → 0. We get

lim
G1→E[W [E]]

E[W [E]] − E[W [E]]G1

E[W [E]] − G1
= ∞,

lim
G1→0

E[W [E]] − E[W [E]]G1

E[W [E]] − G1
= 1, (9)

Observing (9) one may note that G1 = 0, G2 = 1, gives us the only pro-
cess exactly matching (E[W [E], φ[E], λ). Hence, the only parameters we have to
determine to match the mean process of empirical frame error trace are α and β{

α = (1 − λ)E[W ]
β = (1 − λ)(1 − E[W ])

. (10)

4.4 Approximation of the histogram

To assure that the histogram and NACF are matched we should assign the
probability function of frame error to each state of the four state modulating
Markov chain such that the whole probability function matches the histogram
of relative frequencies of bit errors. For probability functions in every state of
the modulating Markov chain the following equations must hold:{∑2

i=1 fj(i)i = Gj , j = 1, 2,∑2
i=1 fj(i) = 1, j = 1, 2,

(11)

where fj(i), i = 0, 1, are probabilities of correct and incorrect frame reception in
state j, Gj is the mean in the state j. The last equation in (11) is just normalizing
condition that must hold for every discrete probability function.

Observe that the histogram of relative frequencies of frame error trace has
only two bins corresponding to correct and incorrect bit receptions. Since fj(i)i =



0, i = 0, j = 1, 2, and fj(i) = fj(i), i = 1, j = 1, 2, the first equations in (11)
reduce to

fj(1) = Gj , j = 1, 2. (12)

Since we satisfied Gj ≤ 1, fj(i), i = 0, 1, j = 1, 2, must satisfy the normalizing
conditions. From the second equations in (11) we obtain fj(0), j = 1, 2, as follows

fj(0) = 1 − fj(1), j = 1, 2. (13)

5 Algorithm and practical implications

5.1 Modeling algorithm

The step-by-step algorithm is as follows:

1. START
2. compute f [E](i), i = 0, 1, K [E](i), i = 0, 1, . . . , i0, E[W [E]];
3. approximate K [E](i) using λ according to (5);
4. choose G1 = 0, G2 = 1;
5. compute α and β according to (10);
6. compute fj(1), j = 1, 2, according to (12);
7. compute fj(0), j = 1, 2, according to (13).
8. END

We made available the C code of the model as well as pre-compiled binaries
for Linux and Windows operating systems at http://www.cs.tut.fi/˜moltchan.

5.2 Practical implementation

Computational requirements and complexity of the algorithm are low. Thanks to
binary nature of frame error traces we have only two histogram bins, f [E](0) and
f [E](1) corresponding to correct and incorrect frame reception. Therefore, the
mean of the empirical trace is expressed using just a single parameter and the
same holds for means in states of D-BMP. Indeed, E[W [E]] =

∑1
i=0 f [E](i)i =

f [E](1)1 = f [E](1) and Gj =
∑1

i=0 fj(i)i = fj(1)1 = fj(1), j = 1, 2. Taking into
account this property of binary traces we avoid the random search algorithm
usually required to approximate the histogram of relative frequencies.

6 Modeling results

We applied our algorithm to available 2Mbps and 5.5Mbps rate traces and found
that it accurately matches both the histogram of relative frequencies and empir-
ical NACF. We show comparison for 2Mbps and 5.5Mbps rate traces.

Comparison of statistical characteristics of empirical data and modeled ones
is shown in Table 2. Recall, that the mean value (together with NACF) pro-
vides sufficient information regarding distributional properties of the covariance



Table 2. Comparison of statistical characteristics.

Trace 2Mbps rate trace 5.5Mbps rate trace

Parameter Emp. Mod. Gen. Emp. Mod. Gen.

Mean 0.096 0.096 0.093 0.117 0.117 0.112

stationary binary stochastic process. One may see that the mean of the model ex-
actly matches mean of the empirical trace. Mean of the generates trace deviates
from mean of the model. This is due to statistical fluctuations.

NACFs of empirical and generated traces and NASF of the model are shown
in Fig. 5. Good approximation of the empirical data takes place up to lags
2 ∼ 3. Then, the NACF of the model underestimates NACF of empirical trace.
We believe that these differences can be neglected since the empirical NACF for
i > 2 ∼ 3 is not far from the confidential interval of NACF estimation.
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Fig. 5. NACFs of empirical, generated traces and NACF of the model.

7 Conclusions

We developed simple and computationally efficient model of IEEE 802.11b frame
error traces that is capable to capture important statistical characteristics of
frame error traces. The associated algorithm allows to explicitly take into account
distributional and autocorrelational properties of empirical data. We showed that
among the class of Markov modulated processes with two-states of the modu-
lating Markov chain there is unique model that provides best approximation
of covariance-stationary binary stochastic process. Such a model results in ex-
tremely simple parameterization algorithm.



We validated our model against empirical frame error traces of IEEE 802.11b
wireless access technology. The proposed approach is not only applicable to frame
error traces but can be used to model bit error traces of wireless channels as
long as the empirical NACF can be approximated by geometrically distributed
component. We believe that the proposed algorithm can also be used to model
frame and bit error traces of other wireless access technologies. For this purpose
we made available the C code of the model as well as pre-compiled binaries for
Linux and Windows operating systems at http://www.cs.tut.fi/˜moltchan.
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