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Abstract

The work describes the performance of two congestion control algo-
rithms: AIMD and 7-AIMD. The first is the default mechanism of TCP;
the second is a proposed congestion control algorithm that improves fair-
ness of AIMD. We consider asynchronous networks where TCP flows have
different propagation delays, a portion of their link is wireless, and they
compete for resources over a single bottleneck link. We show that 7-AIMD
improves the performance of flows that have long propagation delay and
the fairness of the network. In wireless links 7-AIMD outperforms AIMD
and the cost of lost packets (or wasted energy) is the same as that of
AIMD.

1 Introduction

Additive Increase/Multiplicative Decrease (AIMD) is the algorithm that con-
trols congestion in the Internet [6, 11]. It is coded into TCP and adjusts its
sending rate mechanically, according to the ‘signals’ TCP gets from the net-
work. A lost packet from the data it pumps into the network is considered as a
congestion event and therefore, AIMD decreases the sending rate of TCP. Oth-
erwise, when data is transmitted successfully, the AIMD increases the sending
rate of TCP by a packet per RTT (round trip time). It is proved that these
adjustments bring the network load into an equilibrium and TCP flows converge
into a fair state.

Fairness of TCP is an over-argued topic because of the nuances of fairness
[4, 12]. In this work we support the maz-min notion of fairness where all flows
get the same treatment (consume the same resources) from the networks. Max-
min fairness is discussed in detail in [4]. Judged from the max-min notion
of fairness, in asynchronous networks, TCP does not share network resources
equally among flows [6, 9]. The problem is caused by short RTT flows which
increase their sending rate faster than long RT'T ones. Short RT'T flows consume
more resources from the network, leaving thus less resources for the long RTT
flows.

In wireless environments where link disconnections or bit errors are more
frequent than in wired networks, the problem of fairness becomes more apparent.
In these environments flows experience more packet drops, which they consider



as congestion signals, and reduce their sending rate more frequently. Long RTT
flows are those that experience the most severe treatment from the network.
If we add the wireless link error factor to the limited resources the short RTT
flows leave in the system, it is obvious that these flows operate at very low
transmission rates and their process of recovery is very time-consuming.

Although fairness of TCP over heterogeneous (wired and wireless) asyn-
chronous networks is an open issue, it has not received enough attention. A
solution or an improvement of the problem is important for two reasons: i) it
will speed-up the recovery process of long RTT flows when multiple errors occur
in the network!, 7i) when long RTT flows recover faster and have rates close
to short RTT flows, they utilise better the network resources or the available
bandwidth at the wired and at the wireless portion of the network.

Performance of TCP over wireless links has been studied in a range of works
(e.g. [19, 7, 8]) and several mechanisms have been proposed to improve perfor-
mance over such links. However, the focus of these works has been the wireless
hop of the network rather than the global system: flows with heterogeneous
RTTs that traverse wired or wireless links. In this work we experiment with a
congestion control algorithm, named 7-AIMD, whose purpose is to improve fair-
ness of TCP flows in asynchronous networks. This algorithm derives from AIMD
but the rate of the protocol is increased proportionally to its RTT (whereas in
TCP it increases a packet per RT'T). The long RTT 7-AIMD flows increase their
rate faster than they do with AIMD and consume more resources. This scheme
however, does not achieve max-min fairness among flows. The experiments in
this work are focused mainly on the fairness achieved by AIMD and 7-AIMD in
asynchronous networks where a portion of the link is wireless.

The rest of this work is organised as follows: Section 2 describes the related
work on fairness and Section 3 gives detailed description of AIMD and 7-AIMD
mechanism; Section 4 describes the experimental set-up and Section 5 evaluates
the experimental results. Section 6 summarises the work.

2 Related Work

The AIMD was first introduced in [6] where the authors studied the algorithm
in terms of fairness and convergence to equilibrium. Jacobson in his work [11]
proposed and coded into TCP a mechanism similar to AIMD and studied it
in terms of congestion control. The AIMD algorithm is effective in congestion
control but, as its authors have stated out, in asynchronous networks the flows
do not get the same share [6]. The concept of AIMD itself is quite simple, general
and very effective. Although the same concept can be used in different ways to
improve a specific performance characteristic of the network (e.g. [9, 13, 14, 2]),
the AIMD of TCP is limited into achieving only equilibrium in the network.
The proposal in [9] considers the fairness problem of TCP in asynchronous
networks. Increasing the sending rate of TCP by a - r? (where a is a constant
and 7 is the RTT of the flow) can achieve the same rate among the flows and
improve fairness. This mechanism is based on AIMD principles but is shown
experimentally that the overhead (or the number of lost packets) increases sig-

1 Multiple errors might result in sequential decreases of the transmission rate of the flow,
which implies a few packet in transit. When in-transit packets are scarce a loss is very costly
because it could result in time-outs or might make useless the 3 DACK mechanism of TCP



nificantly [10]. Choosing the parameters of this mechanism (i.e. constant a) is
still an open problem. Analysis of congestion avoidance of TCP in asynchronous
systems has shown that when it reaches an equilibrium, the formula

1 T;
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where z; are the rates of each flow and 7; is the RTT of flow 4, is maximized [18].
This is also the fairness characteristic of AIMD in asynchronous systems.

The effect of wireless errors on the throughput performance of TCP has been
studied and reported in a series of works (e.g. [20]). The work in [17] reports
the effect of the wireless errors in the fairness of TCP. The work in [16] reports
the fairness of TCP over 802.11 wireless networks. All these works deal with the
performance of TCP over wireless local area networks which is a mere part of
a large scale asynchronous network (like Internet). In [5] and [3] is studied the
performance of TCP over wireless wide area networks. The improvements that
the authors propose deal mainly with the throughput of TCP and are limited
at the wireless hop of the network.

3 AIMD and 7-AIMD

AIMD is a distributed algorithm that runs at the transport layer of each end-
node with a minimum assistance from the network. The main goal of this algo-
rithm is to control the sending rate of each end-node such that an equilibrium
can be reached in the network. Accordingly, each user increases its sending rate
linearly when resources are available and decreases exponentially the sending
rate as soon as the network is congested. The increase and decrease of the send-
ing rate in TCP is controlled by a parameter called congestion window. This
parameter records how many bytes TCP has in transit (i.e. in the network).
When the whole window is transmitted successfully TCP increases its window
by one packet (i.e. one packet per RTT) and when a packet is lost from the
window it decreases to half the congestion window. In addition to AIMD TCP
has other mechanisms that assist in congestion avoidance process (e.g. ACK
clocking and time-outs) or mechanisms that assist in the recovery process after
packets loss (e.g. three DACK, Fast Retransmit, Slow Start, Fast Recovery).
Algorithmically the AIMD can be expressed with the following lines:

AIMD()

1. a;: constant = packet-size()

2. W : integer // congestion window
3. repeat forever

4. send W bytes in the network
5. receive ACKs

6. if W bytes are ACKed

7. W« W+a;

8. else

9. W« ¥

10. end

END-AIMD

This continuous process of AIMD achieves equilibrium but, does not achieve
max-min fairness in asynchronous networks.



7-AIMD is designed for asynchronous networks: flows might have different
RTT or propagation delays (PD). 7-AIMD controls congestion by using the same
increase/decrease mechanism of AIMD. To improve fairness 7-AIMD increases
the rate of the flows proportionally to the RTT or PD of the flow. Instead of
adding a packet every RTT to the window (a; in the pseudo-code), -AIMD
adds as many as is the flow’s RTT (i.e. 7 - a;, where 7 is the RTT of the flow).
Algorithmically, 7-AIMD can be expressed by the following lines:

7-AIMD()

1. a;: constant = packet-size()

2. W : integer // congestion window
3. repeat forever

4. send W bytes in the network
5. receive ACKs

6. T < Window-transmission-time()
7. if W bytes are ACKed

8. W W4+T1-a;

9. else

10. W ¥

11. end

END-7-AIMD

It is proved in [14] that an asynchronous system where flows use the 7-AIMD
as their congestion control algorithm reaches an equilibrium and a window based
fairness (i.e. windows of the flows become equal when they converge to their
fair state). Window based fairness does not mean that flows achieve max-min
fairness. Nevertheless, window based fairness is closer to max-min fairness than
F% fairness of AIMD is.

4 Experimental Methodology

We have implemented 7-AIMD into TCP and validated its performance on Ns2
[21] simulator. We use the smoothed RTT (srtt variable of Ns2’s TCP) to assign
values to the 7 parameter. Two different sets of experiments are used to validate
the performance of the algorithm. In the first set of experiments we set-up a
topology with a single bottleneck router A as shown in figure 1. Flows have
different propagation delays ranging from 19ms to 129ms and a portion of their
link is wireless (from point B to C in each topology). To simulate the wireless
link errors we use the On/Off error model presented in [1]. This is a Markov
chain model. The packet error rates (PER) in each experiment ranged from
0.01% to 10%.

In the second set of experiments we used a ‘linear topology’ as that in figure 2.
Flows have different PDs and traverse a number of bottleneck routers depending
on their PD (e.g. flow F1 traverses 4 bottleneck routers, flow F2 traverses 3,
flow F3 traverses 2, and flow F4 traverses 1). In these experiments we were
interested in the performance of each algorithm when they traverse a number
of bottlenecks and a portion of their link is wireless.

There are four TCP flows in each experiment (four senders and 4 receivers)
whose performance we monitored. In addition to these flows we added other
background flows at points A and B of each topology that generate forward and
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Figure 1: Single Bottleneck Topology.
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Figure 2: Linear Topology.

backward traffic in order to avoid window and ACK synchronisation. We don’t
measure the performance of these flows.

The experiments are limited to four flows in order to allow each TCP to
expand its window and control the rate mainly with AIMD or 7-AIMD rather
than with other mechanisms of TCP (i.e. time-outs and Slow Start). The
bottleneck routers use the RED drop policy and are configured with the default
Ns2 parameters.

FTP application was attached to each TCP and their task was to send con-
tinuously data for a period of 60 seconds - enough to validate the performance
of each mechanism. We use goodput as a metric to compare the performance of
each algorithm. Goodput is defined as the amount of data received at the appli-
cation over the transmission time. For each PER we conducted 35 experiments
and report the average goodput achieved by each flow.

5 Simulation Results

We evaluate first the performance of both algorithms in a network where the
only cause of packet loss is congestion and then compare their performance in the
presence of errors similar to wireless environments. In figure 3 is displayed the
goodput performance of AIMD and 7-AIMD in the single bottleneck topology.
The figure shows that when the propagation delay of the flows increases, its
goodput performance decreases. The goodput of 7-AIMD flows is higher than
the goodput of AIMD when the propagation delay increases whereas, when
flows have small propagation delay, the goodput of 7-AIMD is slightly lower.
The reason is that long RTT 7-AIMD flows open their window faster than ATMD
flows. Therefore, they grab more resources from the network and leave less for
the short RTT flows. If the network has less resources the performance of the



flows will be lower. In other words, the goodput loss from short RTT flows
is converted in goodput gain from long RTT flows. Nevertheless, the fairness
performance of the system improves. The figure shows that the goodput of the
flow that has delay 80ms from the bottleneck router improves by 16% and the
goodput of the flow that has delay 120% ms from the bottleneck improves by
24%.
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Figure 3: Goodput of TCP-SACK with AIMD and 7-AIMD congestion control
algorithms. The numbers on top of each bar indicate the ratio of 7-AIMD over
AIMD goodput.

Figure 4 shows the performance of the algorithms in the linear topology with
four bottlenecks and in the absence of wireless errors. The performance of AIMD
is similar to its performance in the single bottleneck topology and the gain of
long RTT 7-AIMD flows over AIMD flows is almost the same. These experi-
ments show the capability of 7-AIMD in improving the fairness and achieving
congestion control in asynchronous networks.

2 0.97 m AIMD
® tao-AIMD
@
o
o]
=3
a 14 .99
k]
8 114
o 123
04 IL
10 40 80 120

Propagation delay (ms)

Figure 4: Goodput of TCP-SACK with AIMD and 7-AIMD in the four bottle-
neck topology. The numbers on top of each bar indicate the ratio of 7-AIMD
over AIMD goodput.

In figure 5 is plotted the goodput performance of flows that have delay 10ms
and 40ms respectively, from the bottleneck router. The performance is given as a



function of the error rate in the wireless channel. When the error rate increases
above 0.1% the performance of the flows drops significantly. However, there
is not a clear distinction in the performance of each algorithm. The 7-AIMD
performs the same as AIMD for short RTT flows because of its implementation
in Ns2. The value of ‘7’ in the increase formula is calculated by dividing the
smoothed RTT variable of TCP by 64, which is almost or bigger than the RTT
of the plotted flows?. Therefore, -AIMD increases its window exactly as AIMD
and has the same performance.
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Figure 5: Goodput of flows when the propagation delay is 10ms vs. goodput
when propagation delay is 40ms. Goodput is a function of ‘wireless’ error rate.

When the propagation delay increases the 7-AIMD increases the goodput
of long RTT flows. Figures 6 and 7 show that even in the presence of errors
characteristic to wireless links, the goodput of 7-AIMD is higher that that of
AIMD. This means that the increase mechanism of 7-AIMD benefits also the
recovery process of flows after a wireless error event. Expanding faster the
window makes the flow exploit better the available bandwidth. When the packet
error rates increases up 10% the goodput performance of AIMD and 7-AIMD
becomes almost equal. In such error rates the flows probably experience loss of
the whole window and result in time-outs or in minimal window values. As a
result, the traffic in such high error rates is shaped by time-outs and Slow Start
mechanisms rather than AIMD and 7-AIMD.

In the four bottleneck linear topology the performance of AIMD and 7-
AIMD is similar to the performance in the single bottleneck topology. Because
of the similarity we display only the results with the experiments where flows
have delay 10ms and 120ms respectively, from the bottleneck router A. These
results are shown in figure 8.

In figure 9 is displayed the overhead or the ratio of loosed packets over the
received data at the application. It is obvious that the loss increases when the
error rate at the wireless portion of the link increases. The experiments show
that the overhead of both mechanisms is approximately the same. In erroneous
wireless networks the overhead is mainly due to the loss at the wireless portion
of the network rather than loss at the bottleneck congested routers. For both

2When the division is equal to zero, we set 7 to 1. The source code of the algorithm is
available on line at http://www.cs.ucy.ac.cy/ ladrian/software.html.
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Figure 6: Goodput of flows when the propagation delay is 10ms vs. goodput
when propagation delay is 80ms.
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Figure 7: Goodput of flows when the propagation delay is 10ms vs. goodput
when propagation delay is 120ms.
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Figure 8: Goodput of flows when the propagation delay is 10ms vs. goodput
when propagation delay is 120ms, in the four bottleneck topology.

protocols the overhead increases almost linearly with the error rate. Since the
overhead of both protocols is almost equal we report the overhead of flows that
have delay 10ms and 120ms from the bottleneck router A. In the four bottleneck
topology these numbers are similar.



Tiax

; 10 —— AIMD 120ms
10 - -~ AIMD 10ms ,‘,7' FAIMD 120ms
-+ -+--- t-AIMD 10ms :

Overhead (%)
Overhead (%)

o
1
o
1

Error Rate (%) Error Rate (%)

Figure 9: Left: Overhead of flows when propagation delay is 10ms. Right:
Overhead of flows when propagation delay is 120ms.

An important conclusion that we infer from these experiments is the gain
of 7-AIMD flows over the AIMD ones. In asynchronous (wired or wireless)
networks the goodput of 7-AIMD flows is higher than the goodput of AIMD
flows. Furthermore, the overhead or lost energy of each protocol is the same.
This means that 7-AIMD can achieve higher goodput than AIMD at the same
wasted energy cost. This feature of 7-AIMD is important for wireless devices
where energy is limited and transmission time effect their battery life.

6 Conclusions

The work studies experimentally the performance of —-AIMD and AIMD over
asynchronous networks. We have shown the potential of 7-AIMD to improve
fairness of the network even when a portion of it is wireless. The goodput of
long RTT flows is increased whereas the goodput of short RTT flows reduces by
the same portion. Although the goodput of long RTT flows increases, the cost
of energy loss (or packet loss) is the same as the cost with AIMD. This makes
7-AIMD a protocol suitable for wireless devices where energy is limited and its
loss effects the battery time of the device. 7-AIMD flows transmit an amount
of data faster than AIMD and at a lower energy cost.
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