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Abstract. In this paper, we present a novel congestion control algorithm for the Transmission 
Control Protocol (TCP) for the future Internet. Our assumption of future Internet is that, with 
the increasing quality of service (QoS) requirements, per-flow packet scheduling (per-flow here 
refers to per TCP or UDP connection) will replace the current first-come-first-serve algorithm 
used in routers. Based on the assumption, we design a new congestion control algorithm. In our 
TCP-CC algorithm, each connection adjusts the size of the congestion window according to the 
size of its packet queue at the bottleneck router. Thus, the queue size for each connection at the 
bottleneck router is within a controlled range. We show that congestion loss is effectively 
reduced compared to the current TCP congestion algorithm. 

1. Introduction 
TCP has been the dominant transport layer protocol of the Internet since 1970s. As a 
reliable end-to-end data transmission protocol, it is used by many applications such 
as WWW, FTP, Telnet, Email, etc. It enables the computers on separate networks to 
communicate and share data with each other. However, with the exponential growth 
of computer networks, congestion becomes a severe problem [1]. Congestion control 
algorithms are designed to reduce the packet drops at the bottleneck router.  

Historically, TCP's congestion control algorithms are based on the notion that 
the network is a black box [1] [2]. A TCP sender increases its congestion window 
size (a value that determines the maximal size of data that can be pumped into the 
network by the sender) gradually to probe the available network capacity. When 
packet loss occurs, the size of the congestion window is decreased to relieve the 
network from congestion [3]. However, using packet loss as a primary indication of 
congestion may not always be a good scheme. Sometimes, it causes the packet buffer 
of routers to overflow unnecessarily even if there is only one TCP connection on the 
network. It is inefficient as the dropped packets have to be retransmitted and 
bandwidth is wasted. It may also affect the performance of the real-time traffic on the 
Internet [4]. Therefore, new congestion-control algorithms that avoid using packet 
loss as primary indication of congestion are required.  

Another motivation for designing a new congestion control algorithm is the 
change in the nature of Internet applications. The increasing demand for QoS beyond 
best-effort makes the widely used FCFS packet scheduling algorithm insufficient for 
the future Internet [5] [6]. It does not allow a router to give some sources a lower 
delay than others nor prevent malicious sources from eating up excessive bandwidth. 
Protocols for supporting QoS such as the Resource ReSerVation Protocol (RSVP) [7] 
require the current FCFS packet scheduling algorithm to be replaced with per-flow 
ones [8] [9] [10].   



In this paper, we propose a new TCP congestion control algorithm, which we 
refer to as TCP-CC, for networks that support per-flow packet scheduling. The 
congestion window of a connection is adjusted dynamically according to the size of 
its packet queue at the bottleneck router. Thus, queue size for each connection is 
controlled within a predefined range at the bottleneck router. Compared to the 
congestion control algorithm used by the current TCP implementations, which 
increases the congestion window until packet loss occurs, TCP-CC saves the 
expensive buffer space at the bottleneck router and reduces congestion loss. It is 
superior to TCP Vegas [11] as it can identify the direction of congestion. While 
similar to the one used in TCP Santa Cruz (SC) [12], it overcomes the unfairness 
problem inherent in TCP SC.  

The paper is organised as follows. Section 2 discusses the previous work in 
congestion control for TCP. Section 3 describes our congestion control algorithm. 
Section 4 shows the results obtained from our test-bed and the performance 
improvements compared to other algorithms. Finally, Section 5 summaries the paper. 

2. Previous Work 
Congestion control has been an active research area for TCP since 1986 when the 
Internet was confronted with the congestion collapse for the first time. Many 
solutions with [13] [14] [15] or without [1] [11] [12] [16] [18] the involvement of 
routers have been proposed since then.  

For router-based schemes, the router either drops packets when the size of the 
router buffer reaches a predetermined value (Random Early Detection (RED) 
gateway) [13] or notifies the sender by setting a flag in the packet (Explicit 
Congestion Notification (ECN)) [14]. This consequently adjusts the congestion 
window. The scheme proposed in [15] changes the size of receiver's advertised 
window such that the packet rate is slowed down when network enters the congestion 
state. The problem of router-based algorithms is that the router support is needed.  

End-to-end congestion control algorithms adjust the packet rate according to 
some indication from the network. The earliest congestion control algorithm uses 
packet loss as an indication of congestion [1]. The congestion window is gradually 
increased until packet loss happens, then the window size is halved. This cycle of 
increase-drop-decrease period is repeated. The problem of this algorithm has been 
discussed in Section 1. 

An improved congestion control algorithm, TCP Vegas [11], adjusts the 
congestion window according to the difference between the expected and actual 
throughput. The expected throughput is calculated from the minimal round-trip time 
(RTT) previously observed and the actual throughput is calculated according to the 
current RTT. When the differences are below α or above β, where α and β represent 
too little or too much data in flight, the size of congestion window is increased or 
decreased accordingly. Similar algorithms have been proposed by [16] [18]. 

The problem of using RTT in congestion control is the traffic fluctuation on return 
link, which may lead to erroneous decisions in congestion window adjustment. To 
solve this problem, TCP-SC [12] introduced the concept of relative delay, which is 
the increase and decrease in delay that packets experience with respect to each other 
as they propagate through the network. It estimates the number of packets of a 



connection in the bottleneck router queue using the relative delay and the congestion 
window is adjusted when too little or too many packets are in the queue. However, in 
a multiple connection case, bandwidth is shared unfairly among the connections.  

The above congestion control algorithms do not consider the features of per-flow 
packet scheduling. A congestion control algorithm for per-flow packet scheduling 
has been proposed in [16]. Back-to-back pair packets are sent out and the inter-
arrival time of the acknowledgement packets (ACK) are measured to estimate the 
bandwidth assigned to this connection and the sending rate is adjusted according to 
the estimated bandwidth. While it has the advantages of per-flow packet scheduling, 
the problem of this algorithm is that the variation of the ACK's delay on the return 
link may adversely affect its performance. 

 
3. TCP congestion Control Algorithm 
Our TCP congestion control algorithm is based on the fundamentals of queuing 
theory and applies the concept of relative delay and Back-to-Back pair packets in 
queuing-length detection at the bottleneck router.  
 
3.1 Assumptions 
 
The basic assumption of our algorithm is that per-flow packet scheduling algorithm 
is used in the routers to provide QoS support. Per-flow packet scheduling algorithms 
have been introduced in [8] [9] [10] and Deficit Round Robin (DRR) [10] is 
implemented in a product [20]. Our assumption of the future Internet is as follows. 

• For a given duration during which congestion occurs, there exists only one 
bottleneck router on the link between the sender and receiver.  

• DRR is used in packet scheduling at the bottleneck router. 
• Each TCP connection is treated as a flow.  
• When congestion happens, the router drops packets of the flow with longest 

queue.  
• The sender always has data to send.  
 
3.2 The New Algorithm 
 
Similar to TCP-SC [12], the critical point of our TCP-CC algorithm is in calculating 
the packet-queue-length (PQL) (including the packet that is being served) of a 
connection at the bottleneck router. According to the Little's theorem: 

TN λ=       (1) 
where is the average number of customers in a system, N λ is the arrival rate, and 
T  is the mean time each customer spends in the system. For a computer network, we 
can consider the router as the server and the packets are the customers, and if the 
sender knows the packet arrival rate λ and T , then it can estimate the value of PQL 
at the bottleneck router. Assuming the packet arrival rate from a connection is 

jtλ and the mean time a packet spends at the bottleneck router is T  when the jj
th 



packet reaches the bottleneck router. Then, we can estimate PQL of this connection 
at the bottleneck router, as follows: 

jtt TN
jj
*λ=      (2) 

where       is the PQL at time tj. For a connection, 
jtλ can be derived as: 

j
Nt

R
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#
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where R is the duration between the arrival times of the first and last packets in the 
period for which tλ is being computed.  

j
Therefore, if we can get the value of Tj, then we can know the PQL of this 

connection. One way is to let the router attach the time in the packet. However, this 
method may consume expensive computing resource at the router.  

The concept of relative delay introduced by TCP-SC can tell us the additional 
delay experienced by jth packet compare to the ith packet. If we know the delay, Ti, of 
the ith packet, then we can derive the delay of the jth packet from (4) and (5).  

F
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)()(, ijij
F

ij SSRRD −−−=    (5) 

where j is greater than i,  is the relative delay of the jF
ijD ,

th packet compare to the ith 
packet, Rj and Ri are the arrival times of the jth and ith packets at the receiver side, and 
Sj and Si are the sending times of the jth and ith packets at the sender side.  

The problem lies in determining the value of Ti. Back-to-Back pair packets used 
in [16] can be used in estimating the value of T0 as follows. Firstly, after the 
connection is established, the size of congestion window is set to 2. Thus the Back-
to-Back pair packets, namely, packet 0 and 1, are sent out. The bandwidth assigned 
to this connection at the bottleneck router can then be calculated as follows:  

011 /_ RRsizepktb −=    (6) 
where b1 represent the bandwidth assigned to this connection when packet 1 is served 
by the bottleneck router. As the time interval between packet 0 and 1 are served is 
very short, we assume the bandwidth assigned to this connection does not change too 
much, that is b0 ≅ b1. As packet 0 is the first packet of this connection, no packet is in 
the queue of this connection at the bottleneck router when it reaches. Thus, T0 can be 
estimated as follows. 
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Since R0 and R1 are known values, we can get the estimated value of T0 using (7) and 
get Tj using (4) and (5), and finally get the value of through (2).  

jtN
The congestion window is adjusted according to (8) after each window of data is 

received. It is similar to the schemes used in TCP Vegas and SC. 
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cwnd is the size of congestion window. Qm is the expected value of PQL at the 
bottleneck router for this connection. Qm - α and Qm + β represent the lower and 
upper bound of the PQL at the bottleneck router.  
 

4. Performance Test 
 

In this section, we examine the performance of our new algorithm, TCP-CC, and 
compared its performance with TCP Reno [3], Vegas [11] and SC [12]. We first 
show the performance results for a basic configuration with a single connection case. 
Then, we show the performance results for multiple-connection case. Finally, we 
examine the influence of traffic on the reverse link. We have implemented TCP-CC, 
TCP Vegas and TCP-SC in our test-bed.  

3.1 Configuration of Test-bed 
We set up a test-bed as Fig.1 shows. The test-bed consists of 4 computers with Red 
Hat Linux 7.0 (kernel version: 2.4.10). The computers are connected with 100 Mbps 
Ethernet links. We have developed a per-flow router emulator with a DRR packet 
scheduling algorithm. It simulates the bottleneck router with 100 Mbps input link and 
1.5 Mbps output link. The size of buffer is set to 22.5 KB (15 data packets) at the 
router. The last packet in the longest queue will be dropped when congestion happens. 
Another network emulator, NISTNet [21], is run on the computer labeled as the non-
bottleneck router. It is used to simulate the delay at the non-bottleneck router on the 
Internet. We assume each packet will be delayed 50 ms at the non-bottleneck router. 
The bandwidth delay product (BDP) is equal to 19.8 KB, or 13.5 data packets. In the 
test, the receiver fetches a file with a size of 5 MB from sender through a FTP client.  

3.2 Performance Results for One Connection Case 
 

Fig.2(a) and (b) shows the growth of the TCP Reno's congestion window and 
packet queue at the bottleneck router. As TCP Reno uses packet loss as primary 
congestion indication, it keeps on increasing the size of congestion window until the 
congestion loss happens.  Then, the congestion window is decreased and starts the 
next round of window increase-drop-decrease period. Even for the one-connection 
case, packets are dropped periodically, and cause the congestion window and packet 
queue at bottleneck router to vary in a see-saw oscillation. The delay variance caused 

 
Fig.1: Configuration of Test-bed. 



by this oscillation may affect the performance of real time and interactive 
applications [12].  

Fig.3(a) and (b) shows the variation of the congestion window and the packet 
queue at the bottleneck router of our new algorithm. We set the value of α  to 1.5 and 
β to 2.5. The congestion window varies in a very small range from 13 to 15, and the 
packet queue at bottleneck router varies from 1 to 3 packets. These figures show the 
main advantage of TCP-CC, that is, the bandwidth of the bottleneck router is almost 
fully used without causing any network congestion and packet loss, and the queue 
size at the bottleneck router varies within a controlled range. We have gotten similar 
results for TCP Vegas and SC in terms of the variation of congestion window and 
queue size at bottleneck router. Table 1 shows the throughput of TCP Reno, Vegas, 
SC and TCP-CC. TCP Reno, SC and TCP-CC have similar throughput that is better 
than TCP Vegas. Although congestion loss happens for Reno, the size of the 
congestion window is still greater than the value of BDP. For TCP-SC and TCP-CC, 
after the connection has started for a while, the pipe is kept full. TCP Vegas oscillates 
at the beginning of the connection and keeps the window size below the value of 
BDP for a certain duration. Therefore, the throughput is a little lower than that of the 
others.  

We can also observe from Table 1 that 20 packets have been dropped due to the 
congestion for TCP Reno. For TCP Vegas, SC and TCP-CC, no packets were 
dropped since packet loss was not used as primary indication of congestion.  
 
3.3 Performance Results for Multiple Connection Case 

 
In the following, we study the performance of different algorithms in multiple 
connection cases. In the study, we start multiple connections one after another with 
an interval of 5 seconds. Each connection downloads 5 M bytes of data from server. 
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Fig. 2 TCP Reno (1 connection): (a) CWnd (b) Bottleneck Queue. 
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Fig. 3 TCP-CC (1 connection): (a) CWnd (b) Bottleneck Queue. 

 



We name the connections with their sequence number. For example, we name the 
first connection as conn1, the second as conn2, etc.  

Table 2 shows the performance results for different algorithms in the four-
connection case. The throughputs of TCP Reno, Vegas and TCP-CC are the same as 
the buffers at the bottleneck router always have packets waiting to be sent. The 
throughput of TCP-SC is lower than that of the others. The reason is that, in the 
multiple connection case, the algorithm used by SC for queue size estimation is 
inaccurate. This further causes the congestion windows to be adjusted 
inappropriately. For example, as Fig.4(a) shows, for conn1, even when the 
congestion window is decreased to 2, the estimated queue size is still greater than 2. 
Thus, the cwnd is kept at 2 even when all other connections have completed their 
download and this causes the network to be underutilized. The reason is that SC 
computes the current PQL by summing the PQL of the previous window and the 
PQL introduced by the current window. However, with the change of network status, 
the old PQL has expired and cannot represent the corresponding value of PQL in the 
new network status, thus causing the inaccuracy in PQL estimation. Fig.4(b) shows 
the queue size of conn1 of TCP SC. It oscillates between 0 and 1 for a while and then 
drop to 0 as the cwnd remained at 2.  

TCP SC also has the fairness problem in multiple connection case. As Fig.4(a) 
shows, the values of cwnd for the connections are difference. Some are as high as 16 
while some are as low as 2. The differences cause the bandwidth to be shared 
unfairly among the connections. Although connection 1 started first, it gets a 
bandwidth of 0.22 Mbps (1/7 of the total bandwidth) and is the last one to complete 
the download.  

Compared to TCP-SC, our new algorithm does not have such problems. As 
Fig.5(a) shows, the values of cwnd for the connections are always close to each 
other. It is adjusted when the network status changes, for example, connections open 
or close, and tries to keep the PQL between α and β. Fig.5(b) shows the PQL for the 
conn1. Most of time, it varies in the range of 1 to 3, which is close to our objective. 
Other connections also have similar trends in PQL variation and the bandwidth is 
shared fairly among different connections. 
Table 2: Performance for 4-connection case 
Protocol Throughput Utilization (%) Fairness 
TCP Reno 1.43 Mbps 95.3 fair 
TCP Vegas (2, 4) 1.43 Mbps 95.3 fair 
TCP Santa Cruz 0.88 Mbps 89.3 unfair 
TCP-CC 1.43 Mbps 95.3 fair 
Table 1: Performance for TCP Reno, SC, Vegas and TCP-CC (1 connection). 
Protocol Throughput Utilization (%) Congestion loss 

TCP Reno 1.40 Mbps 89.3 20 packets 
TCP Vegas (2, 4) 1.36 Mbps 63.3 0 

TCP-SC 1.40 Mbps 89.3 0 
TCP-CC 1.40 Mbps 89.3 0 



Table 3 shows the packet drop rate for different algorithms (TCP-SC is not 
included as it has the fairness problem). TCP Reno drops more packets than other 
algorithms. Our TCP-CC is the best with no packet dropped in 4-connection case. 
When the number of connections increases to 6, the maximum number of packets 
expected to queue at the bottleneck router is 2.5 * 6 = 15 packets, which is equal to 
the maximal size of the available buffer at the bottleneck router. Thus, congestion 
loss happens when some connections do not adjust their window on time. However, 
the number of packets dropped by TCP-CC is less than one third of the packets 
dropped by Reno and Vegas. For an 8-connection case, the network is heavily 
congested. Our algorithm still performs better than Reno and Vegas with a 30% less 
in packet drop rate. This suggests that TCP-CC can obviously reduce the congestion 
loss and improve the performance of loss-sensitive applications. 
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Fig. 4.  TCP SC (4 connections): (a) CWnd (b) Queue Size of connection 1. 

0

4

8

12

16

0 50 100 150Time (s)

cw
nd

conn1 conn2 conn3 conn4

0

2

4

6

8

0 50 100 150
Time (s)

Q
ue

ue
 S

iz
e

conn1

 
Fig. 5. TCP-CC (4 connections): (a) CWnd (b) Queue Size of connection 1. 

4.4.1 Traffic on Reverse Link 
 

Table 4 shows the performance results of different congestion control algorithms 
with traffic on the reverse link. The client first starts a connection that fetches data 
from the server, and subsequently starts another connection which sends data to the 
server on the reverse link.  

Results in Table 4 shows that the performance of TCP Reno and TCP-CC is 
better than TCP Vegas with a percentage increase of 33.3% and 30.4% in throughput 
respectively. The reason is because the ACK delay on reverse link causes TCP Vegas 
Table 3: Congestion Loss in Multiple-connection Case. 
Protocol 4 connections 6 connections 8 connections 

TCP Reno 350  (2.4%) 1092 (5.1%) 1963 (7.0%) 
TCP Vegas (2, 4) 0 (0%) 1017 (4.8%) 1916 (6.6%) 

TCP-CC 0 (0%) 315 (1.47%) 1286 (4.5%) 



to incorrectly infer the increase of RTT as congestion on the forward link. Thus, 
cwnd is reduced and kept below BDP.  

Table 4: Throughput Comparison with Traffic on Reverse Link. 
Protocol Throughput 
TCP Reno 1.36 Mbps 
TCP Vegas (2, 4) 1.02 Mbps 
TCP-CC 1.33 Mbps 

For both TCP Reno and TCP-CC, although there is slight performance 
degradation due to the delay of the ACK on the reverse link, the degradations are 
trivial (2.9% and 5%) with TCP Reno performing a little better than TCP-CC (2.3%). 
However, the cost of the better performance is an over-aggressive cwnd-increase 
algorithm that results in more congestion losses, as shown in Table 3. This violates 
the objective of congestion control  reducing the congestion loss.  

5.  Conclusion 
 

In this paper, we have proposed a new congestion-control algorithm (TCP-CC) for 
the future Internet in which per-flow packet-scheduling algorithm is expected to 
replace the FCFS algorithm used by current routers. Compared to other congestion 
control algorithms, our new algorithm has the following advantages: 
• Compared to TCP Reno, TCP-CC adjusts the congestion window based on the 

queue size of the connection at the bottleneck router instead of the packet loss 
and this reduces congestion loss significantly.  

• Compared to TCP Vegas, TCP-CC achieves better throughput, less congestion 
loss and is more accurate in identifying the direction of congestion.  

• Compared to TCP-SC, TCP-CC has sound fundamentals and solves the fairness 
problem in multiple connection scenarios.  

Our future work is to study TCP-CC in a more complex network environment, 
which includes the characteristics of web traffic, the variations in packet size etc. 
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