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Abstract. In this paper, we investigate extensively the joint network dynamics with 
different AIMD window-adjustment parameters on end-hosts, and different queue 
management schemes (i.e. DropTail vs. RED) in routers. We reveal that with 
DropTail buffer, although smooth TCPs causes less queuing-delay jitter, its average 
queuing delay is significantly higher than that of responsive TCPs. The direct 
implication of this discovery is that when mobile users of media-streaming and short 
messages share a bottleneck link, the energy consumption for sending short 
messages can increase severely if media-streaming users adopt smooth TCPs. With 
RED, on the other hand, smooth TCPs not only lead to smaller queue oscillation, the 
average/max queue length is smaller as well. 

1 Introduction 

In computer networks, commodity routers and switches often use FIFO buffers to 
multiplex packets from different flows.  Computer networks thus rely on the congestion 
control algorithms on end-hosts to ‘probe’ available bandwidth, avoid persistent 
congestion, and achieve system fairness. The congestion control algorithm of TCP [1] is 
based on the Additive Increase / Multiplicative Decrease (AIMD) window adjustment 
strategy [2], to reach satisfactory system equilibrium in a distributed fashion.     

While TCP congestion control is appropriate for bulk data transfers, media-streaming 
applications find the standard multiplicative decrease by a factor of 2 upon congestion to 
be unnecessarily severe, as it can cause serious throughput oscillations [3]. Authors in [6] 
investigated the impact of transport protocols on real-time application QoS. Since 
throughput smoothness is crucial to the subjective performance of multimedia applications, 
TCP-friendly protocols [3,10] have been proposed with two fundamental goals: (i) to 
achieve smooth downward adjustments; this is done by increasing the window decrease 
ratio during congestion, and (ii) to compete fairly with TCP flows; this is approached by 



reducing the window increase step according to a steady-state TCP throughput equation. 
TCP friendly protocols favor smoothness by using a gentle backward adjustment upon 
congestion, at the cost of lesser responsiveness - through moderated upward adjustments. 
In this research, we will study one family of TCP-friendly protocols: TCP(α,β) protocols 
[10], which parameterize the additive increase value α and multiplicative decrease ratio β 
of AIMD. The authors in [10] incorporated α and β into a TCP throughput equation, and 
derived a rough guide for appropriately selecting α and β to achieve TCP friendliness:  
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Based on experiments, they propose a β = ⅞ as the appropriate ratio for downward 
window adjustments upon congestion (i.e. smoother than standard TCP). With β = ⅞, 
equation (1) gives an increase value α=0.31 (i.e. less responsive than TCP). We are 
interested in the family of TCP-friendly TCP(α,β) protocols that follow equation (1), 
because they make tradeoffs between responsiveness and smoothness, and  provide a good 
opportunity to acquire interesting and useful insights into the strategy of window 
adjustments: By tuning the protocol parameters α and β, we can watch the trends of 
protocol behaviors under various network and traffic conditions. We categorize three 
classes of TCP-friendly TCP(α, β) protocols: (i) Standard TCP(1, ½); (ii) Responsive TCP 
is TCP(α, β) with relatively low β value and high α value; (iii) Smooth TCP is TCP(α, β) 
with relatively high β value and low α value. 

At the router side, Active Queue Management (AQM) has been recommended for 
overcoming the two important drawbacks of the straightforward “Drop-Tail” buffer [4]: (i) 
Lock-Out: In some situations drop-tail buffer allows a single connection or a few flows to 
monopolize queue space, preventing other connections from getting resources. (ii) Full 
Queues: Drop-tail strategy tends to keep the queue in a (almost) full status for a long 
period of time. A persistent large queue increases the end-to-end delay. Random Early 
Detection (RED) [4] is an AQM scheme dropping packets from among various flows 
randomly before the gateway's queue overflows, when the average queue length starts to 
build up.  

While there are extensive research works on the joint dynamics of one congestion 
control strategy with DropTail/RED, little has been done on the interactions between 
different congestion control strategies with different queue management schemes. In this 
paper, we investigate extensively the joint network dynamics with different (α,β) 
parameters and different queue management schemes (i.e. DropTail vs. RED). We reveal 
that (i) With DropTail buffer, although smooth TCP causes less queuing-delay jitter, its 
average queuing delay is significantly higher than that of responsive TCP. The direct 
implication of this discovery is that when mobile users of media-streaming and short 
messages share a bottleneck link, the energy consumption for sending short messages can 
increase severely if media-streaming applications adopt smooth TCPs. (ii) With RED, on 
the other hand, smooth TCP not only has smaller queue oscillations, the average or max 
queue length is smaller as well. (iii) Although RED can control the magnitude of queue 
oscillations, the frequency of queue oscillations can increase, especially with the fast 



additive increase speed of responsive TCP. (iv) With multiple bottlenecks and different 
levels of capacity aggregations, the system fairness is better with responsive TCP when 
routers use DropTail buffers, or better with smooth TCP when routers use RED. 

The rest of the paper is organized as follows. In section 2, we give an intuitive analysis 
of the dynamics of AIMD control and queue fluctuations.  In section 3, the experiment 
methodology and metrics are given. Section 4 provides detailed results and analysis. 
Section 5 concludes the paper.  

2 The Dynamics of Congestion Control with a Drop Tail Buffer 
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Fig. 1. A simple network topology 

Previously (see [11]) we extended the network model of [2]. Consider a simple network 
topology shown above, in which link bandwidths and propagation delays are labeled.       
n TCP flows share a bottleneck link with capacity of bw, and the round trip propagation 
delay is RTT0. To capture the overall system behavior, we define the aggregated window 
size at time t as: cwnd(t) = ∑ cwndi(t), where cwndi(t) is the window size of the ith flow. 
Consequently, the system throughput at time t can be given by the following equation: 
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where qdelay(t) is the queuing delay at the bottleneck router R1.  
Consider the time period when all flows are in the additive increase stage. If cwnd(t) is 

below the point knee [2], where cwndknee = RTT0 · bw, then there is no steady queue build-
up in R1 (i.e. RTT(t) = RTT0), and according to (2), the throughput grows in proportion to 
cwnd. The bottleneck capacity is not fully utilized until cwnd reaches cwndknee.  

If cwnd increases further beyond cwndknee, however, the bottleneck queue builds up 
steadily, with a saturated bottleneck link. If 
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then ∆w(t) packets will linger in the queue. The TCP flows continue to additively expand 
their window sizes, until the queue length ∆w(t) reaches the buffer size, i.e. when cwnd 
touches the point cliff, where cwndcliff = (RTT0  + max qdelay) · bw. TCP senders then 
multiplicatively decrease their congestion windows, after packet losses due to buffer 
overflow are detected. 

The above analysis demonstrates that increasing cwnd beyond the knee does not 
enhance further the system throughput, but only results in increasing queuing delay. 
Moreover, in order to prevent the system from operating below the knee where bandwidth 
is underutilized, and meanwhile maintain adequate AIMD oscillations (which affects the 
speed to converge to fairness [9]), an efficient window decreasing ratio should be                
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Furthermore, in [11] we confirmed that in a real system, packet losses may not occur to all 
flows when the bottleneck buffer overflows, even with drop tail buffers. The selection of 
which flows to drop is random by nature. With RED, random congestion indications are 
explicitly performed. Therefore, downward window adjustments are not synchronized 
among competing flows. We revealed that with unsynchronized multiplicative decreases, 
the convergence speed to fairness is very slow, if measured by the worst-case fairness [11].  

3 Experimental Methodology 

We implemented our experiment plan on the ns-2 network simulator. The network 
topology is shown in Figure 1 in section 2. The propagation delay of access links is 10ms, 
while the delay of the bottleneck link is 15ms. The capacity of the bottleneck link (bw), 
access links to source/sink nodes (src_bw/sink_bw) is 10 Mbps. For simulations of 
heterogeneous (wired and wireless) networks, ns-2 error models were inserted into the 
access links to the sink nodes.  The Bernoulli model was used to simulate link-level errors 
with configurable bit error rate (BER). The connection time was 100 seconds. 

We selected and evaluated four protocols across a spectrum of TCP-friendly TCP(α, β) 
protocols, from smooth TCP to responsive TCP: TCP(0.31, 0.875), TCP(0.583, 0.75), 
TCP(1, 0.5) (standard TCP) and TCP(1.25, 0.25). The size of the bottleneck buffer is 100 
packets. The settings for RED are as per [5]. Specifically, max_th = 3·min_th and min_th 
= BufferSiz/6.  

Protocol behaviors were also evaluated with multiple bottlenecks and cross traffic, 
using the topology in Figure 2. The router R1 is the bottleneck for the main traffic, which 
includes TCP flows between “source nodes” to “sink nodes”. The router R3 is another 
bottleneck for the competing main traffic and cross traffic, which includes TCP flows 
between “peripheral source nodes” and “peripheral sink nodes”.  
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Fig. 2. Network topology with multiple bottlenecks and cross traffic 

The system goodput, defined as the sum of the goodput of all flows, is used to measure 
the overall system efficiency in terms of bandwidth utilization at the receivers. The queue 
size of the bottleneck router is traced and sampled every 100ms. Long-term Fairness is 
measured by the Fairness Index, defined in [2]: 

∑

∑

=

=









= n

i
i

n

i
i

throughputn

throughput
dexFairnessIn

1

2

2

1
 

where throughputi is the throughput of the ith  flow. This Fairness Index provides a sort of 
“average-case” analysis. In order conduct a “worst-case” analysis and provide a tight 
bound on fairness, the Worst-Case Fairness is defined as: 
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When the system is fair on average but particularly unfair to a very small fraction of flows, 
the unfairness can only be captured by the worst-case fairness (see [11] for details). 

4 Results and Observations 

4.1 Queue Length and its Impact on Energy Consumption of Mobile Devices 

We first simulated 10 flows over the simple network topology described in section 3, with 
a drop-tail buffer. The bottleneck queue lengths over time are depicted in Figures 3-6.  As 
can be seen from the analysis in section 2, the fluctuations of queues reflect the 
oscillations of sending rates, when the system operates above the knee. The queue 
fluctuation of the responsive TCP(1.25, 0.25)  is so dramatic that sometimes its queue 



length approaches zero, and the bottleneck link is temporarily underutilized because of the 
idle queue. On the other hand, although smooth window adjustment leads to smaller jitters 
in queuing delays, the queuing delay remains high throughout the simulation. Due to the 
high window-decrease ratio upon congestion, the average queue length of TCP(0.31, 
0.875) is much higher than the other protocols. Notably this is also true with another 
smoothness-oriented TCP-friendly protocol TFRC (see our results in [11]). 

Fig. 3. DropTail queue with TCP (0.31, 0.875) 
 

Fig. 4. DropTail queue with TCP (0.583, 0.75)  

Fig. 5. DropTail queue with TCP (1, 0.5)  
Fig. 6. DropTail queue with TCP (1.25, 0.25) 

 
The queue lengths were also traced with RED configured in routers, shown in Figures 

7-10. With smooth TCPs, not only the queue oscillation is smaller, but also the 
maximum/average queue size is lower. It seems that RED can control the queue growth 
more effectively with smooth TCP flows. We now give an intuitive analysis why α is the 
dominant factor in this scenario. Assume the average probability that an individual flow 
experiences packet drops is pf, which increases with the queue length. The current queue 
length is determined by the aggregated window size cwnd(t), as shown in section 2. The 
expected size of the aggregated window in the next RTT will be: 
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Intuitively, with a small queue size and hence a small pf, the α-related third term is the 
dominant factor for window adjustments. More importantly, as the number of flows 
increases, the impact of the α-related term increases with n, while the β-related term does 
not.  With the same queue length, the larger n is, the stronger the momentum of 
queue/window increase. Hence, smooth TCPs with a low α are more “responsive” to the 
early packet drops by RED. 
 

 
Fig. 7. RED queue with TCP (0.31, 0.875) 

 
Fig. 8. RED queue with TCP (0.583, 0.75) 

 
Fig. 9. RED queue length with TCP (1, 0.5)  

Fig. 10. RED queue with TCP (1.25, 0.25) 
 

After we increase the number of competing flows to 60, the behavior of RED becomes 
close to DropTail (figures not shown due to the space limit). With a large n, the 
aggregated increase speed of the system is higher, due to the large nα in equation (5) 
(even with a small α). The random packet drops by RED between min_th and max_th 
cannot effectively reduce the momentum of queue buildup. The average queue frequently 
touches max_th, and RED then drops all packets. The system dynamics is similar to a 
DropTail buffer, except that the maximum queue is bounded by max_th = 0.5• buffer_size.  



Implications to Energy Consumptions of Mobile Devices: While the throughput of 
long flows (e.g. multimedia applications) is determined by the available bandwidth, the 
connection time of short flows (e.g. short messages of mobile phones) is mainly bounded 
by RTT. Furthermore, for mobile devices, the extended connection time means higher 
energy consumptions [7], since they cannot quickly switch back to power-saving mode. 
Assume that a group of mobile users subscribe to a media-streaming server. Another 
group of mobile users frequently send/receive short messages (that can fit into one packet) 
to a short-message server. Media-streaming users use laptops that rely less on batteries, 
while short messages of mobile phones are more sensitive to energy consumptions.  
Assume that flows to/from these two servers share a bottleneck link somewhere in the 
network. Smooth TCP-friendly flows originated from the media-streaming server can 
cause large persistent queues in the bottleneck buffer, if RED is not deployed, or if RED is 
deployed but the number of competing flows is large. Data packets or ACKs from the 
short-message server to the mobile phones can be significantly delayed. That is, the 
deployment of smooth TCP for media-streaming can adversely affect the connection time 
and hence the energy consumption of short messages. 

4.2 Network Behaviors over Heterogeneous (Wired/Wireless) Networks  

 
Fig.  11. RED queue Length TCP (0.31, 0.875) 

 
Fig 12. RED queue with TCP (0.583, 0.75) 

 
Fig. 13. RED queue with TCP (1, 0.5) 

 
Fig. 14. RED queue with TCP (1.25, 0.25) 



We further repeated the simulations in section 4.1 by inserting random wireless bit errors, 
with packer error rate 1%. It is interesting to observe that although RED can limit the 
maximum queue and hence the magnitude of queue fluctuation, it cannot fully control the 
frequency of queue oscillations (Figures 11-14). Since RED forces TCP senders to adjust 
before the system reaches the cliff, the queue fluctuates more frequently. On the other 
hand, with smooth TCPs, congestion epochs (the time period between two consecutive 
multiplicative decreases) are extended. Thus, the growing speed of queue is moderated, 
and the frequency of queue oscillations is reduced. 

4.3 Traffic over Complex Topology with Multiple Bottlenecks 
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Fig. 15. DroTail Fairness 
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Fig. 16. DroTail worst-case fairness 
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Fig. 17. RED Fairness 
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Fig. 18. RED Worst-case Fairness  

 
We also tested the system behaviors with different TCP(α, β) protocols over complex 

topologies, shown in Figure 2 in section 3. Half of the flows form the main traffic, while 
the other half form the cross traffic. We choose TCP(0.31, 0.875) to represent smooth 
TCP, and TCP(1.25, 0.25) to represent responsive TCP. We have already shown in [8] 
that with drop tail buffers and standard TCP, the main traffic consumes more bandwidth 
than the cross traffic, due to the fact that packets of main-traffic flows are aggregated 
before entering R2. They are more uniformly distributed in the time domain, therefore 
having a smaller probability to get dropped, compared to the burstiness of non-aggregated 
cross-traffic flows. With RED gateways, better system fairness is achieved. In this paper, 
we further study the system behaviors with different window adjustment strategies and 
queue management schemes. With DropTail, responsive TCP’s fairness (Figure 15-16), 



especially the worst-case fairness, is much higher than smooth TCPs. Notably the lowest 
goodput (Figure 16) of individual flow is less then 10% of the highest one. Upon packet 
losses, responsive TCP flows in the main traffic adjust downwards more dramatically, 
leaving sufficient space for flows in the cross traffic to grow. That is, with responsive 
AIMD window adjustments, the system is less likely to be biased against less aggregated 
flows. With RED turned on in the routers, the system fairness (Figures 17-18) is 
significantly improved, because RED’s early random packet drops discard more packets 
from flows consuming more bandwidth. However, with large number of competing flows, 
the fairness is still low. Interestingly, with RED, smooth TCP achieves better fairness than 
responsive TCP. With smooth TCP, RED can more effectively control the queue growth. 
With the faster increase speed of responsive TCP, the senders can easily overshoot, and 
the average queue frequently touches the point max_th, where RED drops all packets and 
behaves similar to DropTail. 

5 Conclusion 

We investigated the interaction between different window adjustment strategies, and 
different queue management schemes in routers. We discussed its impact on the end-to-
end delay and fairness, and its implications to the energy consumption of mobile phones. 

References 

1. M. Allman, V. Paxson and W. Stevens, “TCP Congestion Control”, RFC2581, April 1999. 
2. D.-M. Chiu and R. Jain, “Analysis of the Increase and Decrease Algorithms for Congestion 

Avoidance in Computer Networks”, Computer Networks and ISDN Systems, 17(1):1-14, 1989. 
3. S. Floyd, M. Handley, J. Padhye, and J. Widmer, “Equation-Based Congestion Control for 

Unicast Applications”, In Proceedings of ACM SIGCOMM 2000, August 2000. 
4. S. Floyd, and V. Jacobson, “Random Early Detection gateways for Congestion Avoidance”, 

IEEE/ACM Transactions on Networking, 1(4):397-413, August 1993. 
5. S. Floyd, “RED: Discussions of Setting Parameters”, November 1997, available from 

http://www.icir.org/floyd/REDparameters.txt 
6. P. Papadimitriou and V. Tsaoussidis, “On Transport Layer Mechanisms for Real-Time QoS”, TR-

DUTH-EE-2005-10, Feb. 2005 
7. C. Jones, K. Sivalingam, P. Agrawal and J. Chen, “A Survey of Energy Efficient Network 

Protocols for Wireless Networks”, ACM Journal on Wireless Networks, vol. 7, No. 4, 2001.  
8. V. Tsaoussidis and C. Zhang, “TCP-Real: Receiver-Oriented Congestion Control”, Computer 

Networks Journal (Elsevier), Vol. 40, No. 4, November 2002. 
9. V. Tsaoussidis and C. Zhang, “The Dynamics of Responsiveness and Smoothness in 

Heterogeneous Networks”, IEEE Journal on Selected Areas in Communications, March 2005. 
10. Y.R. Yang and S.S. Lam, “General AIMD Congestion Control”, IEEE ICNP ’00, Nov 2000. 
11. C. Zhang and V. Tsaoussidis, “Improving TCP Smoothness by Synchronized and Measurement-

based Congestion Avoidance”, In Proceedings of  ACM NOSSDAV 2003, June 2003. 

http://www.icir.org/floyd/REDparameters.txt

