
The Interaction between Window Adjustment Strategies
and Queue Management Schemes

Chi Zhang1 and Lefteris Mamatas2

1 School of Computer Science, Florida International University,
Miami, FL 33139, USA
czhang@cs.fiu.edu

2 Department Of Electrical and Computer Engineering, Demokritos University,
Xanthi 67100, Greece

emamatas@ee.duth.gr

Abstract. In this paper, we investigate extensively the joint network dynamics with
different AIMD window-adjustment parameters on end-hosts, and different queue
management schemes (i.e. DropTail vs. RED) in routers. We reveal that with
DropTail buffer, although smooth TCPs causes less queuing-delay jitter, its average
queuing delay is significantly higher than that of responsive TCPs. The direct
implication of this discovery is that when mobile users of media-streaming and short
messages share a bottleneck link, the energy consumption for sending short
messages can increase severely if media-streaming users adopt smooth TCPs. With
RED, on the other hand, smooth TCPs not only lead to smaller queue oscillation, the
average/max queue length is smaller as well.

1 Introduction

In computer networks, commodity routers and switches often use FIFO buffers to
multiplex packets from different flows. Computer networks thus rely on the congestion
control algorithms on end-hosts to ‘probe’ available bandwidth, avoid persistent
congestion, and achieve system fairness. The congestion control algorithm of TCP [1] is
based on the Additive Increase / Multiplicative Decrease (AIMD) window adjustment
strategy [2], to reach satisfactory system equilibrium in a distributed fashion.

While TCP congestion control is appropriate for bulk data transfers, media-streaming
applications find the standard multiplicative decrease by a factor of 2 upon congestion to
be unnecessarily severe, as it can cause serious throughput oscillations [3]. Authors in [6]
investigated the impact of transport protocols on real-time application QoS. Since
throughput smoothness is crucial to the subjective performance of multimedia applications,
TCP-friendly protocols [3,10] have been proposed with two fundamental goals: (i) to
achieve smooth downward adjustments; this is done by increasing the window decrease
ratio during congestion, and (ii) to compete fairly with TCP flows; this is approached by

reducing the window increase step according to a steady-state TCP throughput equation.
TCP friendly protocols favor smoothness by using a gentle backward adjustment upon
congestion, at the cost of lesser responsiveness - through moderated upward adjustments.
In this research, we will study one family of TCP-friendly protocols: TCP(α,β) protocols
[10], which parameterize the additive increase value α and multiplicative decrease ratio β
of AIMD. The authors in [10] incorporated α and β into a TCP throughput equation, and
derived a rough guide for appropriately selecting α and β to achieve TCP friendliness:

 3/)1(4 2βα −= (1)

Based on experiments, they propose a β = ⅞ as the appropriate ratio for downward
window adjustments upon congestion (i.e. smoother than standard TCP). With β = ⅞,
equation (1) gives an increase value α=0.31 (i.e. less responsive than TCP). We are
interested in the family of TCP-friendly TCP(α,β) protocols that follow equation (1),
because they make tradeoffs between responsiveness and smoothness, and provide a good
opportunity to acquire interesting and useful insights into the strategy of window
adjustments: By tuning the protocol parameters α and β, we can watch the trends of
protocol behaviors under various network and traffic conditions. We categorize three
classes of TCP-friendly TCP(α, β) protocols: (i) Standard TCP(1, ½); (ii) Responsive TCP
is TCP(α, β) with relatively low β value and high α value; (iii) Smooth TCP is TCP(α, β)
with relatively high β value and low α value.

At the router side, Active Queue Management (AQM) has been recommended for
overcoming the two important drawbacks of the straightforward “Drop-Tail” buffer [4]: (i)
Lock-Out: In some situations drop-tail buffer allows a single connection or a few flows to
monopolize queue space, preventing other connections from getting resources. (ii) Full
Queues: Drop-tail strategy tends to keep the queue in a (almost) full status for a long
period of time. A persistent large queue increases the end-to-end delay. Random Early
Detection (RED) [4] is an AQM scheme dropping packets from among various flows
randomly before the gateway's queue overflows, when the average queue length starts to
build up.

While there are extensive research works on the joint dynamics of one congestion
control strategy with DropTail/RED, little has been done on the interactions between
different congestion control strategies with different queue management schemes. In this
paper, we investigate extensively the joint network dynamics with different (α,β)
parameters and different queue management schemes (i.e. DropTail vs. RED). We reveal
that (i) With DropTail buffer, although smooth TCP causes less queuing-delay jitter, its
average queuing delay is significantly higher than that of responsive TCP. The direct
implication of this discovery is that when mobile users of media-streaming and short
messages share a bottleneck link, the energy consumption for sending short messages can
increase severely if media-streaming applications adopt smooth TCPs. (ii) With RED, on
the other hand, smooth TCP not only has smaller queue oscillations, the average or max
queue length is smaller as well. (iii) Although RED can control the magnitude of queue
oscillations, the frequency of queue oscillations can increase, especially with the fast

additive increase speed of responsive TCP. (iv) With multiple bottlenecks and different
levels of capacity aggregations, the system fairness is better with responsive TCP when
routers use DropTail buffers, or better with smooth TCP when routers use RED.

The rest of the paper is organized as follows. In section 2, we give an intuitive analysis
of the dynamics of AIMD control and queue fluctuations. In section 3, the experiment
methodology and metrics are given. Section 4 provides detailed results and analysis.
Section 5 concludes the paper.

2 The Dynamics of Congestion Control with a Drop Tail Buffer

R1 R2

sink_delay
sink_bw

delay
bw

src_delay
src_bw

Sink n Source n

Sink 1 Source 1

Fig. 1. A simple network topology

Previously (see [11]) we extended the network model of [2]. Consider a simple network
topology shown above, in which link bandwidths and propagation delays are labeled.
n TCP flows share a bottleneck link with capacity of bw, and the round trip propagation
delay is RTT0. To capture the overall system behavior, we define the aggregated window
size at time t as: cwnd(t) = ∑ cwndi(t), where cwndi(t) is the window size of the ith flow.
Consequently, the system throughput at time t can be given by the following equation:

)(

)(
)(
)()(

0 tqdelayRTT
tcwnd

tRTT
tcwndtthroughput

+
== (2)

where qdelay(t) is the queuing delay at the bottleneck router R1.
Consider the time period when all flows are in the additive increase stage. If cwnd(t) is

below the point knee [2], where cwndknee = RTT0 · bw, then there is no steady queue build-
up in R1 (i.e. RTT(t) = RTT0), and according to (2), the throughput grows in proportion to
cwnd. The bottleneck capacity is not fully utilized until cwnd reaches cwndknee.

If cwnd increases further beyond cwndknee, however, the bottleneck queue builds up
steadily, with a saturated bottleneck link. If

)0)(()()(>∆∆+= twtwcwndtcwnd knee (3)

then ∆w(t) packets will linger in the queue. The TCP flows continue to additively expand
their window sizes, until the queue length ∆w(t) reaches the buffer size, i.e. when cwnd
touches the point cliff, where cwndcliff = (RTT0 + max qdelay) · bw. TCP senders then
multiplicatively decrease their congestion windows, after packet losses due to buffer
overflow are detected.

The above analysis demonstrates that increasing cwnd beyond the knee does not
enhance further the system throughput, but only results in increasing queuing delay.
Moreover, in order to prevent the system from operating below the knee where bandwidth
is underutilized, and meanwhile maintain adequate AIMD oscillations (which affects the
speed to converge to fairness [9]), an efficient window decreasing ratio should be

bwRTT

BufferSizekwhere
kcwnd

cwnd

cliff

knee

⋅
=

+
==

01
1β (4)

Furthermore, in [11] we confirmed that in a real system, packet losses may not occur to all
flows when the bottleneck buffer overflows, even with drop tail buffers. The selection of
which flows to drop is random by nature. With RED, random congestion indications are
explicitly performed. Therefore, downward window adjustments are not synchronized
among competing flows. We revealed that with unsynchronized multiplicative decreases,
the convergence speed to fairness is very slow, if measured by the worst-case fairness [11].

3 Experimental Methodology

We implemented our experiment plan on the ns-2 network simulator. The network
topology is shown in Figure 1 in section 2. The propagation delay of access links is 10ms,
while the delay of the bottleneck link is 15ms. The capacity of the bottleneck link (bw),
access links to source/sink nodes (src_bw/sink_bw) is 10 Mbps. For simulations of
heterogeneous (wired and wireless) networks, ns-2 error models were inserted into the
access links to the sink nodes. The Bernoulli model was used to simulate link-level errors
with configurable bit error rate (BER). The connection time was 100 seconds.

We selected and evaluated four protocols across a spectrum of TCP-friendly TCP(α, β)
protocols, from smooth TCP to responsive TCP: TCP(0.31, 0.875), TCP(0.583, 0.75),
TCP(1, 0.5) (standard TCP) and TCP(1.25, 0.25). The size of the bottleneck buffer is 100
packets. The settings for RED are as per [5]. Specifically, max_th = 3·min_th and min_th
= BufferSiz/6.

Protocol behaviors were also evaluated with multiple bottlenecks and cross traffic,
using the topology in Figure 2. The router R1 is the bottleneck for the main traffic, which
includes TCP flows between “source nodes” to “sink nodes”. The router R3 is another
bottleneck for the competing main traffic and cross traffic, which includes TCP flows
between “peripheral source nodes” and “peripheral sink nodes”.

R2 R3 R4 R1

10ms
10Mbps

Peripheral
Sink m

Peripheral
Sink 1

10ms
10Mbps

3ms
10Mbps

2ms
10Mbps

30Mbps

10ms

20Mbps 20Mbps

10ms

Peripheral
Source m

Peripheral
Source 1

10ms

Sink n Source n

Sink 1 Source 1

Fig. 2. Network topology with multiple bottlenecks and cross traffic

The system goodput, defined as the sum of the goodput of all flows, is used to measure
the overall system efficiency in terms of bandwidth utilization at the receivers. The queue
size of the bottleneck router is traced and sampled every 100ms. Long-term Fairness is
measured by the Fairness Index, defined in [2]:

∑

∑

=

=

= n

i
i

n

i
i

throughputn

throughput
dexFairnessIn

1

2

2

1

where throughputi is the throughput of the ith flow. This Fairness Index provides a sort of
“average-case” analysis. In order conduct a “worst-case” analysis and provide a tight
bound on fairness, the Worst-Case Fairness is defined as:

ini

ini

throughput

throughput
airnessWorstCaseF

≤≤

≤≤=
1

1

max

min

When the system is fair on average but particularly unfair to a very small fraction of flows,
the unfairness can only be captured by the worst-case fairness (see [11] for details).

4 Results and Observations

4.1 Queue Length and its Impact on Energy Consumption of Mobile Devices

We first simulated 10 flows over the simple network topology described in section 3, with
a drop-tail buffer. The bottleneck queue lengths over time are depicted in Figures 3-6. As
can be seen from the analysis in section 2, the fluctuations of queues reflect the
oscillations of sending rates, when the system operates above the knee. The queue
fluctuation of the responsive TCP(1.25, 0.25) is so dramatic that sometimes its queue

length approaches zero, and the bottleneck link is temporarily underutilized because of the
idle queue. On the other hand, although smooth window adjustment leads to smaller jitters
in queuing delays, the queuing delay remains high throughout the simulation. Due to the
high window-decrease ratio upon congestion, the average queue length of TCP(0.31,
0.875) is much higher than the other protocols. Notably this is also true with another
smoothness-oriented TCP-friendly protocol TFRC (see our results in [11]).

Fig. 3. DropTail queue with TCP (0.31, 0.875)

Fig. 4. DropTail queue with TCP (0.583, 0.75)

Fig. 5. DropTail queue with TCP (1, 0.5)
Fig. 6. DropTail queue with TCP (1.25, 0.25)

The queue lengths were also traced with RED configured in routers, shown in Figures

7-10. With smooth TCPs, not only the queue oscillation is smaller, but also the
maximum/average queue size is lower. It seems that RED can control the queue growth
more effectively with smooth TCP flows. We now give an intuitive analysis why α is the
dominant factor in this scenario. Assume the average probability that an individual flow
experiences packet drops is pf, which increases with the queue length. The current queue
length is determined by the aggregated window size cwnd(t), as shown in section 2. The
expected size of the aggregated window in the next RTT will be:

αβ
αβ

αβ

⋅⋅−+⋅−⋅−=

⋅⋅−+⋅−+⋅⋅=

++⋅=+ ∑∑
∈∈

nptcwndptcwnd
nptcwndptcwndp

tcwndtcwndRTTtcwnd

ff

fff

AIiflow
i

MDjflow
j

)1()()1()(
)1()()1()(

))(())(()(

 (5)

Intuitively, with a small queue size and hence a small pf, the α-related third term is the
dominant factor for window adjustments. More importantly, as the number of flows
increases, the impact of the α-related term increases with n, while the β-related term does
not. With the same queue length, the larger n is, the stronger the momentum of
queue/window increase. Hence, smooth TCPs with a low α are more “responsive” to the
early packet drops by RED.

Fig. 7. RED queue with TCP (0.31, 0.875)

Fig. 8. RED queue with TCP (0.583, 0.75)

Fig. 9. RED queue length with TCP (1, 0.5)

Fig. 10. RED queue with TCP (1.25, 0.25)

After we increase the number of competing flows to 60, the behavior of RED becomes
close to DropTail (figures not shown due to the space limit). With a large n, the
aggregated increase speed of the system is higher, due to the large nα in equation (5)
(even with a small α). The random packet drops by RED between min_th and max_th
cannot effectively reduce the momentum of queue buildup. The average queue frequently
touches max_th, and RED then drops all packets. The system dynamics is similar to a
DropTail buffer, except that the maximum queue is bounded by max_th = 0.5• buffer_size.

Implications to Energy Consumptions of Mobile Devices: While the throughput of
long flows (e.g. multimedia applications) is determined by the available bandwidth, the
connection time of short flows (e.g. short messages of mobile phones) is mainly bounded
by RTT. Furthermore, for mobile devices, the extended connection time means higher
energy consumptions [7], since they cannot quickly switch back to power-saving mode.
Assume that a group of mobile users subscribe to a media-streaming server. Another
group of mobile users frequently send/receive short messages (that can fit into one packet)
to a short-message server. Media-streaming users use laptops that rely less on batteries,
while short messages of mobile phones are more sensitive to energy consumptions.
Assume that flows to/from these two servers share a bottleneck link somewhere in the
network. Smooth TCP-friendly flows originated from the media-streaming server can
cause large persistent queues in the bottleneck buffer, if RED is not deployed, or if RED is
deployed but the number of competing flows is large. Data packets or ACKs from the
short-message server to the mobile phones can be significantly delayed. That is, the
deployment of smooth TCP for media-streaming can adversely affect the connection time
and hence the energy consumption of short messages.

4.2 Network Behaviors over Heterogeneous (Wired/Wireless) Networks

Fig. 11. RED queue Length TCP (0.31, 0.875)

Fig 12. RED queue with TCP (0.583, 0.75)

Fig. 13. RED queue with TCP (1, 0.5)

Fig. 14. RED queue with TCP (1.25, 0.25)

We further repeated the simulations in section 4.1 by inserting random wireless bit errors,
with packer error rate 1%. It is interesting to observe that although RED can limit the
maximum queue and hence the magnitude of queue fluctuation, it cannot fully control the
frequency of queue oscillations (Figures 11-14). Since RED forces TCP senders to adjust
before the system reaches the cliff, the queue fluctuates more frequently. On the other
hand, with smooth TCPs, congestion epochs (the time period between two consecutive
multiplicative decreases) are extended. Thus, the growing speed of queue is moderated,
and the frequency of queue oscillations is reduced.

4.3 Traffic over Complex Topology with Multiple Bottlenecks

0
0,1
0,2
0,3
0,4
0,5

0,6
0,7
0,8
0,9

1

10 20 30 40 50 60 70 80 90 100

Number of Flows

Fa
ir

ne
ss TCP(0.31, 0.875)

TCP(1, 0.5)
TCP(1.25, 0.25)

Fig. 15. DroTail Fairness

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

10 20 30 40 50 60 70 80 90 100

Number of Flows

W
or

st
-C

as
e

Fa
irn

es
s

TCP(0.31, 0.875)
TCP(1, 0.5)
TCP(1.25, 0.25)

Fig. 16. DroTail worst-case fairness

0
0,1
0,2
0,3
0,4
0,5

0,6
0,7
0,8
0,9

1

10 20 30 40 50 60 70 80 90 100

Number of Flows

Fa
irn

es
s TCP(0.31, 0.875)

TCP(1, 0.5)
TCP(1.25, 0.25)

Fig. 17. RED Fairness

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

10 20 30 40 50 60 70 80 90 100

Number of Flows

W
or

st
-C

as
e

Fa
irn

es
s

TCP(0.31, 0.875)
TCP(1, 0.5)
TCP(1.25, 0.25)

Fig. 18. RED Worst-case Fairness

We also tested the system behaviors with different TCP(α, β) protocols over complex

topologies, shown in Figure 2 in section 3. Half of the flows form the main traffic, while
the other half form the cross traffic. We choose TCP(0.31, 0.875) to represent smooth
TCP, and TCP(1.25, 0.25) to represent responsive TCP. We have already shown in [8]
that with drop tail buffers and standard TCP, the main traffic consumes more bandwidth
than the cross traffic, due to the fact that packets of main-traffic flows are aggregated
before entering R2. They are more uniformly distributed in the time domain, therefore
having a smaller probability to get dropped, compared to the burstiness of non-aggregated
cross-traffic flows. With RED gateways, better system fairness is achieved. In this paper,
we further study the system behaviors with different window adjustment strategies and
queue management schemes. With DropTail, responsive TCP’s fairness (Figure 15-16),

especially the worst-case fairness, is much higher than smooth TCPs. Notably the lowest
goodput (Figure 16) of individual flow is less then 10% of the highest one. Upon packet
losses, responsive TCP flows in the main traffic adjust downwards more dramatically,
leaving sufficient space for flows in the cross traffic to grow. That is, with responsive
AIMD window adjustments, the system is less likely to be biased against less aggregated
flows. With RED turned on in the routers, the system fairness (Figures 17-18) is
significantly improved, because RED’s early random packet drops discard more packets
from flows consuming more bandwidth. However, with large number of competing flows,
the fairness is still low. Interestingly, with RED, smooth TCP achieves better fairness than
responsive TCP. With smooth TCP, RED can more effectively control the queue growth.
With the faster increase speed of responsive TCP, the senders can easily overshoot, and
the average queue frequently touches the point max_th, where RED drops all packets and
behaves similar to DropTail.

5 Conclusion

We investigated the interaction between different window adjustment strategies, and
different queue management schemes in routers. We discussed its impact on the end-to-
end delay and fairness, and its implications to the energy consumption of mobile phones.

References

1. M. Allman, V. Paxson and W. Stevens, “TCP Congestion Control”, RFC2581, April 1999.
2. D.-M. Chiu and R. Jain, “Analysis of the Increase and Decrease Algorithms for Congestion

Avoidance in Computer Networks”, Computer Networks and ISDN Systems, 17(1):1-14, 1989.
3. S. Floyd, M. Handley, J. Padhye, and J. Widmer, “Equation-Based Congestion Control for

Unicast Applications”, In Proceedings of ACM SIGCOMM 2000, August 2000.
4. S. Floyd, and V. Jacobson, “Random Early Detection gateways for Congestion Avoidance”,

IEEE/ACM Transactions on Networking, 1(4):397-413, August 1993.
5. S. Floyd, “RED: Discussions of Setting Parameters”, November 1997, available from

http://www.icir.org/floyd/REDparameters.txt
6. P. Papadimitriou and V. Tsaoussidis, “On Transport Layer Mechanisms for Real-Time QoS”, TR-

DUTH-EE-2005-10, Feb. 2005
7. C. Jones, K. Sivalingam, P. Agrawal and J. Chen, “A Survey of Energy Efficient Network

Protocols for Wireless Networks”, ACM Journal on Wireless Networks, vol. 7, No. 4, 2001.
8. V. Tsaoussidis and C. Zhang, “TCP-Real: Receiver-Oriented Congestion Control”, Computer

Networks Journal (Elsevier), Vol. 40, No. 4, November 2002.
9. V. Tsaoussidis and C. Zhang, “The Dynamics of Responsiveness and Smoothness in

Heterogeneous Networks”, IEEE Journal on Selected Areas in Communications, March 2005.
10. Y.R. Yang and S.S. Lam, “General AIMD Congestion Control”, IEEE ICNP ’00, Nov 2000.
11. C. Zhang and V. Tsaoussidis, “Improving TCP Smoothness by Synchronized and Measurement-

based Congestion Avoidance”, In Proceedings of ACM NOSSDAV 2003, June 2003.

http://www.icir.org/floyd/REDparameters.txt

