
Refined PFTK-Model of TCP Reno Throughput in the
Presence of Correlated Losses

Roman Dunaytsev, Yevgeni Koucheryavy, Jarmo Harju

Institute of Communications Engineering, Tampere University of Technology
P.O. Box 553, FIN-33101, Tampere, Finland

{dunaytse, yk, harju}@cs.tut.fi

Abstract. This paper presents a simple and accurate analytical model of TCP
Reno throughput as a function of loss rate, average round trip time and receiver
window size based on PFTK-model. The presented model refines previous
work by careful examination of fast retransmit/fast recovery dynamics in the
presence of correlated losses and taking into consideration slow start phase after
timeout. The accuracy of the proposed model is validated against simulation re-
sults and compared with those of PFTK-model. Simulation results show that
our model gives a more accurate estimation of TCP Reno throughput in the
presence of correlated losses than PFTK-model.

1 Introduction

Transmission Control Protocol (TCP) is the de facto standard protocol for the reliable
data delivery in the Internet. Recent measurements show that from 60% to 90% of to-
day’s Internet traffic is carried by TCP [1]. Due to this fact, TCP performance model-
ing has received a lot of attention during the last decade [2].

One of the most known and wide referenced analytical models of TCP throughput
of a bulk transfer is the model proposed by J. Padhye et al. in [3], also known as
PFTK-model. This model describes steady-state throughput of a long-lived TCP Reno
bulk transfer as a function of loss rate, average round trip time (RTT) and receiver
window size. It assumes a correlated (bursty) loss model that is better suited for FIFO
Drop Tail queues currently prevalent in the Internet.

Unfortunately, this model does not capture slow start phase after timeout and uses
simplified representation of fast retransmit/fast recovery dynamics in the presence of
correlated losses as having negligible effect on TCP Reno throughput. As it will be
shown later, such simplifications can lead to overestimation of TCP Reno throughput.
Since new analytical TCP models are often compared with PFTK-model (e.g., [4],
[5], [6]) and use its resultant formula (e.g., [7], [8]), such inaccuracy in throughput es-
timation can lead to inaccurate results or incorrect conclusions.

In this paper, we propose a simple and more accurate steady-state TCP Reno
throughput prediction model. This is achieved by careful examination of fast retrans-
mit/fast recovery dynamics in the presence of correlated losses and taking into con-
sideration slow start phase after timeout.

The reminder of the paper is organized as follows. Section 2 describes assumptions
we made while constructing our model. Section 3 presents a detailed analysis of the
proposed model. Section 4 describes model validation experiments, presents an analy-
sis of the accuracy of our model and the one proposed in [3]. Finally, Section 5 con-
cludes the paper.

2 Assumptions

The refined model we develop in this paper has exactly the same assumptions about
endpoints and network as the model presented in [3]. We assume that the sender uses
TCP Reno congestion control algorithm based on [9] and always has data to send.
Since we are focusing on TCP performance, we do not consider sender or receiver de-
lays and limitations due to scheduling or buffering. Therefore, we assume that the
sender sends full-sized segments whenever the congestion window (cwnd) allows,
while the receiver window (rwnd) is assumed to be always constant. We model TCP
behavior in terms of “rounds” as done in [3], where a round starts when the sender
begins the transmission of a window of segments and ends when the sender receives
an acknowledgement (ACK) for one or more of these segments. It is assumed that the
receiver uses delayed acknowledgement algorithm according to [10]. When modeling
data transfer, we assume that segment loss happens only in the direction from the
sender to the receiver. Moreover, we assume that a segment is lost in a round inde-
pendently of any segments lost in other rounds, but at the same time segment losses
are correlated within a round (i.e., if a segment is lost, all the remaining segments in
that round are also lost). Such bursty loss model is a simplified representation of IP-
datagram loss process in routers using FIFO Drop Tail queuing discipline. We assume
that the time needed to send a window of segments is smaller than the duration of a
round; it is also assumed that probability of segment loss and the duration of a round
are independent of the window size. This can only be true for flows that are not fully
utilizing the path bandwidth (i.e., in case of high level of statistical multiplexing).

3 The Model

According to [9], segment loss can be detected in one of two ways: either by the re-
ception at the sender of “triple-duplicate” ACK or via retransmission timeout expira-
tion. Similarly to [3], let us denote the first event as a TD (triple-duplicate) loss indi-
cation, and the second as a TO (timeout) loss indication. As in [3], we develop our
model in several steps: when the loss indications are exclusively TD (Section 3.1);
when the loss indications are both TD and TO (Section 3.2); and when the window
size is limited by the receiver window (Section 3.3).

3.1 TD Loss Indications

In this section, we assume that all loss indications are exclusively TD and that the
window size is not limited by the receiver window. In this case, according to [3], the
long-term behavior of TCP Reno flow may be modeled as a cyclic process, where a
cycle (denoted in [3] as a TD Period, TDP) is a period between two TD loss indica-
tions. For the -thi cycle ()1,2,...i = let iY be the number of segments sent during the

cycle, iA be the duration of the cycle and iW be the window size at the end of the cy-

cle. Considering { }i i
W to be a Markov regenerative process with renewal reward

process { }i i
Y , we can define the long-term steady-state TCP throughput B as

[]
[]

.
E Y

B
E A

=
(1)

Fig. 1 shows the evolution of congestion window size during the -thi cycle according
to [3].

1iα −

iTDP

iX

no. of rounds

segments sent

1
2
3
4

5
6

2
1−iW

1 2 3 4

iW

b b b

iα

last round
penultimate
round

iβ

...

ACKed
segment

lost
segment

...

iδ

Fig. 1. Segments sent during the -thi cycle (TD Period) according to [3]

A cycle starts immediately after a TD loss indication, hence the current cwnd (ex-
pressed in segments) is set to 1 / 2iW − . The receiver sends one ACK for every -thb
segment that it receives (according to [10], 2b =), so cwnd increases linearly with a
slope of 1/ b segments per round until the first segment loss occurs. Let us denote by

iα the first segment loss in the -thi cycle and by iX the round where this loss occurs
(see Fig. 1). According to the sliding window algorithm, after the segment iα ,

()1iW − more segments are sent before a TD loss indication occurs and the current
cycle ends.

Let us consider the evolution of congestion window size in the -thi cycle after the
first TD loss indication. Taking into account the assumption about correlated losses
within a round (i.e., if a segment is lost, so are all following segments till the end of
the round), all segments following iα in the round iX (denoted in Fig. 1 as the pe-
nultimate round) are lost as well. Let us define iδ to be the number of segments lost
in the round iX and iβ to be the number of segments sent in the next (and the last)

round ()1iX + of the -thi cycle (see Fig. 1). Similarly to [3], we assume that random

variables iβ and iδ are uniformly distributed from zero to ()1iW − and from one to

iW correspondingly. Thus, taking into account that i i iWβ δ= − we have

[] [] [] []1 1
, .

2 2

E W E W
E Eβ δ

− +
= =

(2)

After a TD loss indication the sender enters the fast retransmit/fast recovery phase
and performs a retransmission of the lost segment. The slow start threshold
(ssthresh) and the current value of cwnd are updated according to [9] as

()max / 2 , 2 , ,DupACKssthresh FlightSize W ssthresh N′= = + (3)

where FlightSize is the number of segments that has been sent, but not yet acknowl-
edged; W ′ is the value of cwnd during fast recovery phase; DupACKN is the number
of received duplicate ACKs.

Since []DupACKE N E β  =  , [] []E FlightSize E W= and using (2), we can deter-

mine []E W ′ as

[] [] [] [] []
1 1

.
2 2 2DupACK

E W E W
E W E ssthresh E N E W

−
 ′ = + = + = − 

(4)

As [] []E W E FlightSize′ < , it is expected that the sender will not send new seg-
ments in the fast recovery phase. After the successful retransmission of the segment

iα the sender will receive new ACK, indicating that the receiver is waiting for the

segment ()1iα + . As a result of receiving this new ACK, the phase of fast retrans-

mit/fast recovery ends and according to [9] the new value of cwnd is set as
W ssthresh= , where ssthresh is from (3). Since FlightSize is still larger than the
new value of cwnd , the sender cannot transmit new segments, therefore this ACK
will be the single. As the sender will not be able to invoke the fast retransmit/fast re-
covery algorithms again, then it will wait for the expiration of retransmission timeout
(RTO), which was set after the successful retransmission of the segment iα (in ac-
cordance with [11], step 5.3). After the RTO expiration, the values of cwnd and
ssthresh are set as 1W = and ()max / 2 , 2ssthresh FlightSize= , and the slow start
phase begins.

Thus, in the presence of correlated losses and when the first loss is detected via a
TD loss indication, the following sequence of steps is expected:
- initialization of the fast retransmit and fast recovery algorithms, retransmission of

the first lost segment;
- awaiting for the RTO expiration, which was set after the successful retransmis-

sion of the first lost segment;
- initialization of the slow start algorithm.
Our observation is well agreed with the results from [12], showing that TCP Reno has
performance problems when multiple segments are dropped from one window of
segments and that these problems result from the need to wait for the RTO expiration
before reinitiating data flow. Moreover, empirical measurements from [3] show that
the significant part of loss indications (in average 71%) is due to timeouts, rather than
TD loss indications.

In order to include the fast retransmit/fast recovery phase and the slow start phase,
we define a cycle to be a period between two TO loss indications (besides periods be-
tween two consecutive timeouts). Therefore, a cycle consists of the slow start phase,
congestion avoidance phase, fast retransmit/fast recovery phase and one timeout. An
example of the evolution of congestion window size is shown in Fig. 2, where the
congestion avoidance phase (TD Period in [3]) is supplemented with the slow start
phase at the beginning and the fast retransmit/fast recovery phase with one timeout at
the end.

RTO

cyclei

iN iX

slow start slow start

... iN1 21 no. of rounds

segments sent

2
1−iW

iW

iα

ACKed segment

lost segment

...

...

2
iW

ssthresh =

Fig. 2. Evolution of congestion window size during the -thi cycle, supplemented with the slow
start phase at the beginning and the fast retransmit/fast recovery phase with one timeout at the

end of the congestion avoidance phase

Observe that i i iY Wα= + , thus we have

[] [] [] .E Y E E Wα= + (5)

The expected number of segments sent in a cycle up to and including the first lost
segment is given in [3] as

[] () 1

1

1
1 ,

k

k

E p p k
p

α
∞

−

=

= − ⋅ ⋅ =∑
(6)

where p is the probability that a segment is lost, given that it is either the first seg-
ment in its round or the preceding segment in its round is not lost.

As in [3], let ijr be the duration of the -thj round of -thi cycle (, 1, 2, ...i j =). If

we assume ijr to be random variables independent of cwnd , then we have

[] [] [] [] []
[]

2 ,
E RTO

E A E r E N E X
E r

 
= ⋅ + + +  

 

(7)

where []E r RTT= ; []E RTO RTO= ; []E N is the expected number of slow start
rounds.

In order to derive []E X and []E W , let us consider the evolution of cwnd as a

function of number of rounds. Similarly to [3], we assume that 1 / 2iW − and /iX b are
integers. Therefore, we have

1 1 , 1, 2, ...
2
i i

i

W X
W i

b
−= + − =

(8)

Then the number of segments sent during the congestion avoidance (CA) phase of the
-thi cycle can be defined as

1

1 1

0

1 .
2 2 2

iX
b

CA i i i i i
i i i

k

W X W X X
Y k b

b
β β

−

− −

=

⋅   = + ⋅ + = + ⋅ − +   
   

∑

(9)

Combining (8) and (9), we obtain

1 .
2 2

CA i i
i i i

X W
Y W β− 

= ⋅ + + 
 

(10)

Similarly to [3], we assume { }i i
X and { }i i

W to be mutually independent sequences

of i.i.d. random variables. After the transformation of (8) we get

[] []
1 .

2

E W
E X b

 
= ⋅ +  

 

(11)

Hence

[] [] [] [] [] []3 3 1
1 .

2 2 4 2 2
CA E X E W b E W E W E W

E Y E β
 ⋅ ⋅ ⋅ −

  = ⋅ + = ⋅ + +    
 

(12)

According to [7], the number of segments sent during the slow start (SS) phase can
be closely approximated by a geometric series. At the same time it is known from [9],

that the receiver sends an immediate duplicate ACK when out-of-order segment ar-
rives (i.e., 1b =). Then we can approximate

2 1 1

1

1 2 2 ... 2 2 2 1.
N

SS N k N

k

Y − −

=

= + + + + = = −∑
(13)

The required number of slow start rounds to send SSY segments can be expressed as

()2log 1 .SSN Y= + (14)

Taking into account, that in the slow start phase of the -thi cycle cwnd growths ex-
ponentially from one to 1 / 2issthresh W −= , from (13) we have

[] [] 12 .
2

E NE W −=
(15)

Combining (13), (14) and (15), we obtain

[] 1.SSE Y E W  = −  (16)

By substituting (16) in (14) and taking into consideration (3), we get the expected
number of slow start rounds as

[] []()2max log , 2 .E N E W= (17)

Based on (5), (12) and (16) and taking into account the retransmitted segment in
the fast retransmit phase, the following system of equations can be defined as

[] []

[] [] [] [] []

1

3 1
1 1 1

4 2 2

E Y E W
p

b E W E W E W
E Y E W

 = +

  ⋅ ⋅ − = − + ⋅ + + +    

(18)

Solving this system of equations for []E W , we get

[]
2

2 3 8 4 2 3
.

3 3 3
b p b

E W
b b p b

+ ⋅ + ⋅ + ⋅   = − + +   ⋅ ⋅ ⋅ ⋅   

(19)

In order to show that the slow start phase will enter in the congestion avoidance
phase before the first segment loss occurs, we have to prove that []SSE Y E α  < 

(i.e., [] 1
1E W

p
− <). Solving this inequality, we get

3
9 12 4

b
b p b

p
⋅

+ ⋅ ⋅ + ⋅ > . The

last inequality holds since 0p > and 1b ≥ .
By substituting (11) and (17) in (7), we have

[] []() []
2max log , 2 1 2 .

2

E W RTO
E A RTT E W b

RTT

  
 = ⋅ + ⋅ + + +     

(20)

Combining (1), (5), (6), (19) and (20), we obtain

[]

[]() []
2

1

,

max log , 2 1 2
2

E W
p

B
E W RTO

RTT E W b
RTT

+
=

  
 ⋅ + ⋅ + + +     

(21)

where []E W is given in (19).

3.2 TD and TO Loss Indications

A TO loss indication happens when segments (or ACKs) are lost and less than three
duplicate ACKs are received. Note that in this case there will be no fast retrans-
mit/fast recovery phase in a cycle. Similarly to [3], we define ijW to be the window

size at the end of the -thj cycle (), 1, 2,...i j = , ijA to be the duration of the -thj cy-

cle, TO
iZ to be the duration of a sequence of timeouts, TD

iZ to be the duration of time

interval between two consecutive timeout sequences, TD TO
i i iS Z Z= + . The number of

transmitted segments during the last cycle and the duration of the last cycle can be

approximated as []()1E Y − and []()E A RTT− (where []E Y is from (5) and []E A

is from (20)).
From [3] we can define long-term steady-state TCP throughput B as

[] [] []
[] []

[] []()
[] ()

11
,

TO TO

E Y Q E RE n E Y E R
B

E n E A E Z RTT E A Q E Z RTT

+ ⋅ −⋅ + −
= =

 ⋅ + −  + ⋅ −   

(22)

where []E R is the expected number of segments sent during timeout sequence;
TOE Z   is the expected duration of timeout sequence; []1Q E n= is the probability

that a loss indication ending a cycle is a TO.
The probability that a loss indication is a TO under the current congestion window

size w is given in [3] as

µ ()
()() () ()()()

()

3 3 3
1 1 1 1 1 1

min 1, ,
1 1

w

w

p p p
Q w

p

− − − ⋅ + − ⋅ − − 
=  

− − 
 

(23)

which can be approximated for small values of p as

µ () µ []()3
min 1, , ,Q w Q Q E W

w
 ≈ ≈ 
 

(24)

where []E W is given in (19).

According to [3], []E R can be defined as

[] 1
.

1
E R

p
=

−

(25)

Note that in contrast to [3], the duration of the first timeout from the sequence of con-
secutive timeouts is incorporated in the duration of a cycle. Therefore, the duration of
the sequence of timeouts (excepting the first timeout) is

() []
()()

2 2 , when 2, 6 ,

62 64 6 , when 7 ,

k

k

RTO k
L

k RTO k

 − ⋅ ∈= 
+ ⋅ − ⋅ ≥

(26)

and the expectation of TOZ is

()1

2

2 3 4 5 6

1

2 2 4 8 16 32
.

1

TO k
k

k

E Z L p p

p p p p p p
RTO

p

∞
−

=

  = ⋅ ⋅ − = 

⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅
= ⋅

−

∑

(27)

Combining (5), (20), (23) and (27), we obtain

µ ()

() µ () ()
2

1
1

,

max log , 2 1 2
2 1

p
E W Q E W

p p
B

E W f pRTO
RTT E W b Q E W RTO RTT

pRTT

+ +       −
=

       + + + + + −              −    

(28)

where

() 2 3 4 5 62 2 4 8 16 32 .f p p p p p p p= ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ (29)

3.3 The Impact of Receiver Window Size

Let us denote by maxW the receiver window size and by []uE W the unconstrained

window size. Similarly to [3], we assume that [] maxuE W W< leads to [] []uE W E W≈

(where []E W is from (19)) and [] maxuE W W≥ leads to [] maxE W W≈ . Thus, using
derivation from [3] and taking into account that

() []
2

max max max
max

3 1
,

8 4 2
CA b W b W W

E Y E V W
⋅ ⋅ ⋅ −  = − + ⋅ + 

(30)

we obtain the following system of equations

[]

[] () []

max

2
max max max

max max

1

3 1
1 1

8 4 2

E Y W
p

b W b W W
E Y W E V W

 = +



⋅ ⋅ ⋅ − = − + − + ⋅ + +

(31)

Hence, the expected number of rounds when the window size remains constant is

[] max max

max

4 2 31
4 2 8

b p W p b W
E V

p W
+ ⋅ ⋅ + ⋅ ⋅ ⋅

= − −
⋅ ⋅

(32)

and

[] max max

max

4 2 1
.

8 4 2
b W b p W p

E X
p W

⋅ + ⋅ ⋅ + ⋅
= + −

⋅ ⋅

(33)

Therefore

[] () max max
2 max

max

4 2 3
max log , 2 .

8 4 2

b W b p W p RTO
E A RTT W

p W RTT

⋅ + ⋅ ⋅ + ⋅
= ⋅ + + + +

⋅ ⋅

 
  
 

(34)

In conclusion, the complete expression of TCP throughput can be represented by the
following expression

[] $ []()

[]() [] $ []() ()

[]
$ ()

() $ () ()

2

max

max max

max max
2 max max

max

ma

1

1
,

max log , 2 1 2
2 1

when ,
1

1
,

4 2 3
max log , 2

8 4 2 1
when

p
E W Q E W

p p

E W f pRTO
RTT E W b Q E W RTO RTT

pRTT
W E WB p

W Q W
p p

f pbW bpW p RTO
RTT W Q W RTO RTT

pW pRTT
W

+ +
−

+ + + + + −
−

>=
+ +

−

+ +
+ + + + + −

−

    
        

   
   

  
[]x .E W≤















(35)

4 Model Validation through Simulation

In order to validate the proposed model and compare it with the one presented in [3],
we compared the results obtained from the both analytical models against simulation
results obtained from ns-2 [13]. We performed experiments using the well-known
single bottleneck (“dumbbell”) network topology. In this topology all access links

have a propagation delay of 1 ms and a bandwidth of 10 Mbps. The bottleneck link is
configured as a Drop Tail link and has a propagation delay of 8 ms, bandwidth of 2
Mbps and a buffer size of 50 packets. To model TCP Reno connection we used
Agent/TCP/Reno as a TCP Reno sender, Agent/TCPSink/DelAck as a TCP receiver
with delayed acknowledgement algorithm and FTP as an application for transmitting
infinite amount of data. We set TCP segment size to be 1460 bytes and maximum re-
ceiver window size (maxW) to be 10 segments.

It has been noted in [14] that Web-traffic tends to be self-similar in nature and it
was shown in [15] that superposition of many ON/OFF sources whose ON/OFF times
are independently drawn from heavy-tailed distributions such as Pareto distribution
can produce asymptotically self-similar traffic. Thus, we modeled the effects of com-
peting Web-like traffic and high level of statistical multiplexing as a superposition of
many ON/OFF UDP sources. Similarly to [16], in our experiments we set the shape
parameter of Pareto distribution to be 1.2, the mean ON time to be 1 second and the
mean OFF time to be 2 seconds. During ON times the UDP sources transmit with the
rate of 12 kbps. The number of UDP sources was varied between 220 and 420 with
the step of 10 sources. For each step we ran 100 simulation trials with a simulation
time of 3600 seconds for each trial. In order to remove transient phase at the begin-
ning of simulation, the collection of data was started after 60 seconds from the begin-
ning of the simulation.

As in [3], in order to estimate the value of p , we used the ratio of the total number
of loss indications to the total number of segments sent as an approximate value of p .
Fig. 3a compares our model and the one presented in [3] against the simulation re-
sults. It easy to see, that the predicted values of throughput by the proposed model are
much closer to the simulation results.

To quantify the accuracy of the both analytical models we computed the average
error using the following expression from [3]:

() ()
()

predicted observed

observations observedAverage error .
number of observations

B p B p

B p

−

=
∑

(36)

As shown in Fig. 3b, the proposed model has the average error smaller than 0.05 over
a wide range of loss rates.

0 0.02 0.04 0.06 0.08 0.1 0.12
0

10

20

30

40

50

60

70

Simulated
Proposed
PFTK-model

Frequency of Loss Indications (p)

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

se
gm

en
ts

/s
ec

)

0 0.02 0.04 0.06 0.08 0.1 0.12
0

0.2

0.4

0.6

0.8

1

Proposed
PFTK-model

Frequency of Loss Indications (p)

A
ve

ra
ge

 E
rr

or

a) b)

Fig. 3. Average throughput (a) and average error (b) of the proposed and PFTK models

5 Conclusion

In this paper we developed an analytical model for predicting TCP Reno throughput
in the presence of correlated losses. The model is based on the one proposed in [3]
and improves it by taking into consideration a fast retransmit/fast recovery dynamics
and slow start phase after timeout. The presented model has the average error smaller
than 0.05 over a wide range of loss rates with the mean of 0.03, while the one, pro-
posed in [3] performs well when the loss rate is quite small and significantly overes-
timates TCP Reno throughput in the middle-to-high loss rate range.

References

1. M. Fomenkov, K. Keys, D. Moore, and k. claffy. Longitudinal study of Internet traffic in
1998-2003. Technical Report, Cooperative Association for Internet Data Analysis (CAIDA),
2003.

2. J. Olsen. Stochastic modeling and simulation of the TCP protocol. PhD thesis, Uppsala Uni-
versity, Sweden, 2003.

3. J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling TCP Reno performance: a simple
model and its empirical validation. IEEE/ACM Transactions on Networking, vol. 8, no. 2,
pp. 133-145, April 2000.

4. S. Fortin and B. Sericola. A Markovian model for the stationary behavior of TCP. Technical
Report RR-4240, IRISA-INRIA, France, September 2001.

5. B. Sikdar, S. Kalyanaraman, and K. Vastola. An integrated model for the latency and steady
state throughput of TCP connections. Performance Evaluation, vol. 46, no. 2-3, pp. 139-154,
October 2001.

6. O. Bogoiavlenskaia, M. Kojo, M. Mutka, and T. Alanko. Analytical Markovian model of
TCP congestion avoidance algorithm performance. Technical Report C-2002-13, University
of Helsinki, Finland, April 2002.

7. N. Cardwell, S. Savage, and T. Anderson. Modeling TCP latency. Proc. IEEE
INFOCOM’00, vol. 3, Tel Aviv, pp. 1742-1751, March 2000.

8. S. Fu and M. Atiquzzman. Modeling TCP Reno with spurious timeouts in wireless mobile
environment. Proc. 12-th International Conference on Computer Communications and Net-
works, Dallas, October 2003.

9. M. Allman, V. Paxson, and W. Stevens. TCP congestion control. IETF RFC 2581, April
1999.

10. R. Braden. Requirements for Internet hosts. IETF RFC 1122, October 1989.
11. V. Paxson and M. Allman. Computing TCP’s retransmission timer. IETF RFC 2988, No-

vember 2000.
12. K. Fall and S. Floyd. Simulation-based comparison of Tahoe, Reno and SACK TCP. ACM

SIGCOMM Computer Communication Review, vol. 26, no. 3, pp. 5-21, July 1996.
13. UCB/LBNL/VINT. The network simulator - ns-2. http://www.isi.edu/nsnam/ns/
14. K. Park, G. Kim, and M. Crovella. On the relationship between file sizes, transport proto-

cols and self-similar network traffic. Technical Report 1996-016, Boston University, USA,
August 1996.

15. W. Willinger, M. Taqqu, R. Sherman, and D. Wilson. Self-similarity through high variabil-
ity: statistical analysis of Ethernet LAN traffic at the source level. IEEE/ACM Transactions
on Networking, vol. 5, no. 1, pp. 71-86, February 1997.

16. J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. A model-based TCP-friendly rate control
protocol. Proc. NOSSDAV, Basking Ridge, pp. 137-151, June 1999.

