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Abstract. This paper presents a simple and accurate analytical model of TCP 
Reno throughput as a function of loss rate, average round trip time and receiver 
window size based on PFTK-model. The presented model refines previous 
work by careful examination of fast retransmit/fast recovery dynamics in the 
presence of correlated losses and taking into consideration slow start phase after 
timeout. The accuracy of the proposed model is validated against simulation re-
sults and compared with those of PFTK-model. Simulation results show that 
our model gives a more accurate estimation of TCP Reno throughput in the 
presence of correlated losses than PFTK-model. 

1   Introduction 

Transmission Control Protocol (TCP) is the de facto standard protocol for the reliable 
data delivery in the Internet. Recent measurements show that from 60% to 90% of to-
day’s Internet traffic is carried by TCP [1]. Due to this fact, TCP performance model-
ing has received a lot of attention during the last decade [2]. 

One of the most known and wide referenced analytical models of TCP throughput 
of a bulk transfer is the model proposed by J. Padhye et al. in [3], also known as 
PFTK-model. This model describes steady-state throughput of a long-lived TCP Reno 
bulk transfer as a function of loss rate, average round trip time (RTT) and receiver 
window size. It assumes a correlated (bursty) loss model that is better suited for FIFO 
Drop Tail queues currently prevalent in the Internet. 

Unfortunately, this model does not capture slow start phase after timeout and uses 
simplified representation of fast retransmit/fast recovery dynamics in the presence of 
correlated losses as having negligible effect on TCP Reno throughput. As it will be 
shown later, such simplifications can lead to overestimation of TCP Reno throughput. 
Since new analytical TCP models are often compared with PFTK-model (e.g., [4], 
[5], [6]) and use its resultant formula (e.g., [7], [8]), such inaccuracy in throughput es-
timation can lead to inaccurate results or incorrect conclusions. 

In this paper, we propose a simple and more accurate steady-state TCP Reno 
throughput prediction model. This is achieved by careful examination of fast retrans-
mit/fast recovery dynamics in the presence of correlated losses and taking into con-
sideration slow start phase after timeout. 



The reminder of the paper is organized as follows. Section 2 describes assumptions 
we made while constructing our model. Section 3 presents a detailed analysis of the 
proposed model. Section 4 describes model validation experiments, presents an analy-
sis of the accuracy of our model and the one proposed in [3]. Finally, Section 5 con-
cludes the paper. 

2   Assumptions 

The refined model we develop in this paper has exactly the same assumptions about 
endpoints and network as the model presented in [3]. We assume that the sender uses 
TCP Reno congestion control algorithm based on [9] and always has data to send. 
Since we are focusing on TCP performance, we do not consider sender or receiver de-
lays and limitations due to scheduling or buffering. Therefore, we assume that the 
sender sends full-sized segments whenever the congestion window ( cwnd ) allows, 
while the receiver window ( rwnd ) is assumed to be always constant. We model TCP 
behavior in terms of “rounds” as done in [3], where a round starts when the sender 
begins the transmission of a window of segments and ends when the sender receives 
an acknowledgement (ACK) for one or more of these segments. It is assumed that the 
receiver uses delayed acknowledgement algorithm according to [10]. When modeling 
data transfer, we assume that segment loss happens only in the direction from the 
sender to the receiver. Moreover, we assume that a segment is lost in a round inde-
pendently of any segments lost in other rounds, but at the same time segment losses 
are correlated within a round (i.e., if a segment is lost, all the remaining segments in 
that round are also lost). Such bursty loss model is a simplified representation of IP-
datagram loss process in routers using FIFO Drop Tail queuing discipline. We assume 
that the time needed to send a window of segments is smaller than the duration of a 
round; it is also assumed that probability of segment loss and the duration of a round 
are independent of the window size. This can only be true for flows that are not fully 
utilizing the path bandwidth (i.e., in case of high level of statistical multiplexing). 

3   The Model 

According to [9], segment loss can be detected in one of two ways: either by the re-
ception at the sender of “triple-duplicate” ACK or via retransmission timeout expira-
tion. Similarly to [3], let us denote the first event as a TD (triple-duplicate) loss indi-
cation, and the second as a TO (timeout) loss indication. As in [3], we develop our 
model in several steps: when the loss indications are exclusively TD (Section 3.1); 
when the loss indications are both TD and TO (Section 3.2); and when the window 
size is limited by the receiver window (Section 3.3). 



3.1   TD Loss Indications 

In this section, we assume that all loss indications are exclusively TD and that the 
window size is not limited by the receiver window. In this case, according to [3], the 
long-term behavior of TCP Reno flow may be modeled as a cyclic process, where a 
cycle (denoted in [3] as a TD Period, TDP) is a period between two TD loss indica-
tions. For the -thi  cycle ( )1,2,...i =  let iY  be the number of segments sent during the 

cycle, iA  be the duration of the cycle and iW  be the window size at the end of the cy-

cle. Considering { }i i
W  to be a Markov regenerative process with renewal reward 

process { }i i
Y , we can define the long-term steady-state TCP throughput B  as 

[ ]
[ ]

.
E Y

B
E A

=  
(1) 

Fig. 1 shows the evolution of congestion window size during the -thi  cycle according 
to [3]. 
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Fig. 1. Segments sent during the -thi  cycle (TD Period) according to [3] 

A cycle starts immediately after a TD loss indication, hence the current cwnd  (ex-
pressed in segments) is set to 1 / 2iW − . The receiver sends one ACK for every -thb  
segment that it receives (according to [10], 2b = ), so cwnd  increases linearly with a 
slope of 1/ b  segments per round until the first segment loss occurs. Let us denote by 

iα  the first segment loss in the -thi  cycle and by iX  the round where this loss occurs 
(see Fig. 1). According to the sliding window algorithm, after the segment iα , 

( )1iW −  more segments are sent before a TD loss indication occurs and the current 
cycle ends. 



Let us consider the evolution of congestion window size in the -thi  cycle after the 
first TD loss indication. Taking into account the assumption about correlated losses 
within a round (i.e., if a segment is lost, so are all following segments till the end of 
the round), all segments following iα  in the round iX  (denoted in Fig. 1 as the pe-
nultimate round) are lost as well. Let us define iδ  to be the number of segments lost 
in the round iX  and iβ  to be the number of segments sent in the next (and the last) 

round ( )1iX +  of the -thi  cycle (see Fig. 1). Similarly to [3], we assume that random 

variables iβ  and iδ  are uniformly distributed from zero to ( )1iW −  and from one to 

iW  correspondingly. Thus, taking into account that i i iWβ δ= −  we have 

[ ] [ ] [ ] [ ]1 1
, .

2 2

E W E W
E Eβ δ

− +
= =  

(2) 

After a TD loss indication the sender enters the fast retransmit/fast recovery phase 
and performs a retransmission of the lost segment. The slow start threshold 
( ssthresh ) and the current value of cwnd  are updated according to [9] as 

( )max / 2 , 2 , ,DupACKssthresh FlightSize W ssthresh N′= = +  (3) 

where FlightSize  is the number of segments that has been sent, but not yet acknowl-
edged; W ′  is the value of cwnd  during fast recovery phase; DupACKN  is the number 
of received duplicate ACKs. 

Since [ ]DupACKE N E β  =  , [ ] [ ]E FlightSize E W=  and using (2), we can deter-

mine [ ]E W ′  as 

[ ] [ ] [ ] [ ] [ ]
1 1

.
2 2 2DupACK

E W E W
E W E ssthresh E N E W

−
 ′ = + = + = −   

(4) 

As [ ] [ ]E W E FlightSize′ < , it is expected that the sender will not send new seg-
ments in the fast recovery phase. After the successful retransmission of the segment 

iα  the sender will receive new ACK, indicating that the receiver is waiting for the 

segment ( )1iα + . As a result of receiving this new ACK, the phase of fast retrans-

mit/fast recovery ends and according to [9] the new value of cwnd  is set as 
W ssthresh= , where ssthresh  is from (3). Since FlightSize  is still larger than the 
new value of cwnd , the sender cannot transmit new segments, therefore this ACK 
will be the single. As the sender will not be able to invoke the fast retransmit/fast re-
covery algorithms again, then it will wait for the expiration of retransmission timeout 
( RTO ), which was set after the successful retransmission of the segment iα  (in ac-
cordance with [11], step 5.3). After the RTO  expiration, the values of cwnd  and 
ssthresh  are set as 1W =  and ( )max / 2 , 2ssthresh FlightSize= , and the slow start 
phase begins. 



Thus, in the presence of correlated losses and when the first loss is detected via a 
TD loss indication, the following sequence of steps is expected: 
- initialization of the fast retransmit and fast recovery algorithms, retransmission of 

the first lost segment; 
- awaiting for the RTO  expiration, which was set after the successful retransmis-

sion of the first lost segment; 
- initialization of the slow start algorithm. 
Our observation is well agreed with the results from [12], showing that TCP Reno has 
performance problems when multiple segments are dropped from one window of 
segments and that these problems result from the need to wait for the RTO  expiration 
before reinitiating data flow. Moreover, empirical measurements from [3] show that 
the significant part of loss indications (in average 71%) is due to timeouts, rather than 
TD loss indications. 

In order to include the fast retransmit/fast recovery phase and the slow start phase, 
we define a cycle to be a period between two TO loss indications (besides periods be-
tween two consecutive timeouts). Therefore, a cycle consists of the slow start phase, 
congestion avoidance phase, fast retransmit/fast recovery phase and one timeout. An 
example of the evolution of congestion window size is shown in Fig. 2, where the 
congestion avoidance phase (TD Period in [3]) is supplemented with the slow start 
phase at the beginning and the fast retransmit/fast recovery phase with one timeout at 
the end. 
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Fig. 2. Evolution of congestion window size during the -thi  cycle, supplemented with the slow 
start phase at the beginning and the fast retransmit/fast recovery phase with one timeout at the 

end of the congestion avoidance phase 

Observe that i i iY Wα= + , thus we have 

[ ] [ ] [ ] .E Y E E Wα= +  (5) 

The expected number of segments sent in a cycle up to and including the first lost 
segment is given in [3] as 



[ ] ( ) 1

1

1
1 ,

k

k

E p p k
p

α
∞

−

=

= − ⋅ ⋅ =∑  
(6) 

where p  is the probability that a segment is lost, given that it is either the first seg-
ment in its round or the preceding segment in its round is not lost. 

As in [3], let ijr  be the duration of the -thj  round of -thi  cycle ( , 1, 2, ...i j = ). If 

we assume ijr  to be random variables independent of cwnd , then we have 

[ ] [ ] [ ] [ ] [ ]
[ ]

2 ,
E RTO

E A E r E N E X
E r

 
= ⋅ + + +  

 
 

(7) 

where [ ]E r RTT= ; [ ]E RTO RTO= ; [ ]E N  is the expected number of slow start 
rounds. 

In order to derive [ ]E X  and [ ]E W , let us consider the evolution of cwnd  as a 

function of number of rounds. Similarly to [3], we assume that 1 / 2iW −  and /iX b  are 
integers. Therefore, we have 

1 1 , 1, 2, ...
2
i i

i

W X
W i

b
−= + − =  

(8) 

Then the number of segments sent during the congestion avoidance (CA) phase of the 
-thi  cycle can be defined as 

1

1 1

0

1 .
2 2 2

iX
b

CA i i i i i
i i i

k

W X W X X
Y k b

b
β β

−

− −

=

⋅   = + ⋅ + = + ⋅ − +   
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∑  

(9) 

Combining (8) and (9), we obtain 

1 .
2 2

CA i i
i i i

X W
Y W β− 

= ⋅ + + 
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(10) 

Similarly to [3], we assume { }i i
X  and { }i i

W  to be mutually independent sequences 

of i.i.d. random variables. After the transformation of (8) we get 

[ ] [ ]
1 .

2

E W
E X b

 
= ⋅ +  

 
 

(11) 

Hence 

[ ] [ ] [ ] [ ] [ ] [ ]3 3 1
1 .

2 2 4 2 2
CA E X E W b E W E W E W

E Y E β
 ⋅ ⋅ ⋅ −

  = ⋅ + = ⋅ + +    
 

 
(12) 

According to [7], the number of segments sent during the slow start (SS) phase can 
be closely approximated by a geometric series. At the same time it is known from [9], 



that the receiver sends an immediate duplicate ACK when out-of-order segment ar-
rives (i.e., 1b = ). Then we can approximate 

2 1 1

1

1 2 2 ... 2 2 2 1.
N

SS N k N

k

Y − −

=

= + + + + = = −∑  
(13) 

The required number of slow start rounds to send SSY  segments can be expressed as 

( )2log 1 .SSN Y= +  (14) 

Taking into account, that in the slow start phase of the -thi  cycle cwnd  growths ex-
ponentially from one to 1 / 2issthresh W −= , from (13) we have 

[ ] [ ] 12 .
2

E NE W −=  
(15) 

Combining (13), (14) and (15), we obtain 

[ ] 1.SSE Y E W  = −   (16) 

By substituting (16) in (14) and taking into consideration (3), we get the expected 
number of slow start rounds as 

[ ] [ ]( )2max log , 2 .E N E W=  (17) 

Based on (5), (12) and (16) and taking into account the retransmitted segment in 
the fast retransmit phase, the following system of equations can be defined as 

[ ] [ ]

[ ] [ ] [ ] [ ] [ ]

1

3 1
1 1 1

4 2 2

E Y E W
p

b E W E W E W
E Y E W

 = +

  ⋅ ⋅ − = − + ⋅ + + +    

 

(18) 

Solving this system of equations for [ ]E W , we get 

[ ]
2

2 3 8 4 2 3
.

3 3 3
b p b

E W
b b p b

+ ⋅ + ⋅ + ⋅   = − + +   ⋅ ⋅ ⋅ ⋅   
 

(19) 

In order to show that the slow start phase will enter in the congestion avoidance 
phase before the first segment loss occurs, we have to prove that [ ]SSE Y E α  <   

(i.e., [ ] 1
1E W

p
− < ). Solving this inequality, we get 

3
9 12 4

b
b p b

p
⋅

+ ⋅ ⋅ + ⋅ > . The 

last inequality holds since 0p >  and 1b ≥ . 
By substituting (11) and (17) in (7), we have 



[ ] [ ]( ) [ ]
2max log , 2 1 2 .

2

E W RTO
E A RTT E W b

RTT

  
 = ⋅ + ⋅ + + +     

 
(20) 

Combining (1), (5), (6), (19) and (20), we obtain 

[ ]

[ ]( ) [ ]
2

1

,

max log , 2 1 2
2

E W
p

B
E W RTO

RTT E W b
RTT

+
=

  
 ⋅ + ⋅ + + +     

 

(21) 

where [ ]E W  is given in (19). 

3.2   TD and TO Loss Indications 

A TO loss indication happens when segments (or ACKs) are lost and less than three 
duplicate ACKs are received. Note that in this case there will be no fast retrans-
mit/fast recovery phase in a cycle. Similarly to [3], we define ijW  to be the window 

size at the end of the -thj  cycle ( ), 1, 2,...i j = , ijA  to be the duration of the -thj  cy-

cle, TO
iZ  to be the duration of a sequence of timeouts, TD

iZ  to be the duration of time 

interval between two consecutive timeout sequences, TD TO
i i iS Z Z= + . The number of 

transmitted segments during the last cycle and the duration of the last cycle can be 

approximated as [ ]( )1E Y −  and [ ]( )E A RTT−  (where [ ]E Y  is from (5) and [ ]E A  

is from (20)). 
From [3] we can define long-term steady-state TCP throughput B  as 

[ ] [ ] [ ]
[ ] [ ]

[ ] [ ]( )
[ ] ( )

11
,

TO TO

E Y Q E RE n E Y E R
B

E n E A E Z RTT E A Q E Z RTT

+ ⋅ −⋅ + −
= =

 ⋅ + −  + ⋅ −   
 

(22) 

where [ ]E R  is the expected number of segments sent during timeout sequence; 
TOE Z    is the expected duration of timeout sequence; [ ]1Q E n=  is the probability 

that a loss indication ending a cycle is a TO. 
The probability that a loss indication is a TO under the current congestion window 

size w  is given in [3] as 

µ ( )
( )( ) ( ) ( )( )( )

( )

3 3 3
1 1 1 1 1 1

min 1, ,
1 1

w

w

p p p
Q w

p

− − − ⋅ + − ⋅ − − 
=  

− − 
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(23) 

which can be approximated for small values of p  as 



µ ( ) µ [ ]( )3
min 1, , ,Q w Q Q E W

w
 ≈ ≈ 
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(24) 

where [ ]E W  is given in (19). 

According to [3], [ ]E R  can be defined as 

[ ] 1
.

1
E R

p
=

−
 

(25) 

Note that in contrast to [3], the duration of the first timeout from the sequence of con-
secutive timeouts is incorporated in the duration of a cycle. Therefore, the duration of 
the sequence of timeouts (excepting the first timeout) is 

( ) [ ]
( )( )

2 2 , when 2, 6 ,

62 64 6 , when 7 ,

k

k

RTO k
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k RTO k

 − ⋅ ∈= 
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(26) 

and the expectation of TOZ  is 
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2
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(27) 

Combining (5), (20), (23) and (27), we obtain 

µ ( )

( ) µ ( ) ( )
2

1
1

,

max log , 2 1 2
2 1

p
E W Q E W

p p
B

E W f pRTO
RTT E W b Q E W RTO RTT

pRTT
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=
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(28) 

where 

( ) 2 3 4 5 62 2 4 8 16 32 .f p p p p p p p= ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅  (29) 

3.3   The Impact of Receiver Window Size 

Let us denote by maxW  the receiver window size and by [ ]uE W  the unconstrained 

window size. Similarly to [3], we assume that [ ] maxuE W W<  leads to [ ] [ ]uE W E W≈  

(where [ ]E W  is from (19)) and [ ] maxuE W W≥  leads to [ ] maxE W W≈ . Thus, using 
derivation from [3] and taking into account that 



( ) [ ]
2

max max max
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3 1
,

8 4 2
CA b W b W W

E Y E V W
⋅ ⋅ ⋅ −  = − + ⋅ +   
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we obtain the following system of equations 
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1
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p
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(31) 

Hence, the expected number of rounds when the window size remains constant is 

[ ] max max

max

4 2 31
4 2 8

b p W p b W
E V

p W
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and 

[ ] max max
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.
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(33) 

Therefore 
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 

 
(34) 

In conclusion, the complete expression of TCP throughput can be represented by the 
following expression 
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(35) 

4   Model Validation through Simulation 

In order to validate the proposed model and compare it with the one presented in [3], 
we compared the results obtained from the both analytical models against simulation 
results obtained from ns-2 [13]. We performed experiments using the well-known 
single bottleneck (“dumbbell”) network topology. In this topology all access links 



have a propagation delay of 1 ms and a bandwidth of 10 Mbps. The bottleneck link is 
configured as a Drop Tail link and has a propagation delay of 8 ms, bandwidth of 2 
Mbps and a buffer size of 50 packets. To model TCP Reno connection we used 
Agent/TCP/Reno as a TCP Reno sender, Agent/TCPSink/DelAck as a TCP receiver 
with delayed acknowledgement algorithm and FTP as an application for transmitting 
infinite amount of data. We set TCP segment size to be 1460 bytes and maximum re-
ceiver window size ( maxW ) to be 10 segments. 

It has been noted in [14] that Web-traffic tends to be self-similar in nature and it 
was shown in [15] that superposition of many ON/OFF sources whose ON/OFF times 
are independently drawn from heavy-tailed distributions such as Pareto distribution 
can produce asymptotically self-similar traffic. Thus, we modeled the effects of com-
peting Web-like traffic and high level of statistical multiplexing as a superposition of 
many ON/OFF UDP sources. Similarly to [16], in our experiments we set the shape 
parameter of Pareto distribution to be 1.2, the mean ON time to be 1 second and the 
mean OFF time to be 2 seconds. During ON times the UDP sources transmit with the 
rate of 12 kbps. The number of UDP sources was varied between 220 and 420 with 
the step of 10 sources. For each step we ran 100 simulation trials with a simulation 
time of 3600 seconds for each trial. In order to remove transient phase at the begin-
ning of simulation, the collection of data was started after 60 seconds from the begin-
ning of the simulation. 

As in [3], in order to estimate the value of p , we used the ratio of the total number 
of loss indications to the total number of segments sent as an approximate value of p . 
Fig. 3a compares our model and the one presented in [3] against the simulation re-
sults. It easy to see, that the predicted values of throughput by the proposed model are 
much closer to the simulation results. 

To quantify the accuracy of the both analytical models we computed the average 
error using the following expression from [3]: 

( ) ( )
( )

predicted observed

observations observedAverage error .
number of observations

B p B p

B p

−

=
∑

 

(36) 

As shown in Fig. 3b, the proposed model has the average error smaller than 0.05 over 
a wide range of loss rates. 

0 0.02 0.04 0.06 0.08 0.1 0.12
0

10

20

30

40

50

60

70

Simulated
Proposed
PFTK-model

Frequency of Loss Indications (p)

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

se
gm

en
ts

/s
ec

)

 

0 0.02 0.04 0.06 0.08 0.1 0.12
0

0.2

0.4

0.6

0.8

1

Proposed
PFTK-model

Frequency of Loss Indications (p)

A
ve

ra
ge

 E
rr

or

 
a) b) 

Fig. 3. Average throughput (a) and average error (b) of the proposed and PFTK models 



5   Conclusion 

In this paper we developed an analytical model for predicting TCP Reno throughput 
in the presence of correlated losses. The model is based on the one proposed in [3] 
and improves it by taking into consideration a fast retransmit/fast recovery dynamics 
and slow start phase after timeout. The presented model has the average error smaller 
than 0.05 over a wide range of loss rates with the mean of 0.03, while the one, pro-
posed in [3] performs well when the loss rate is quite small and significantly overes-
timates TCP Reno throughput in the middle-to-high loss rate range. 
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