Refined PFTK-Model of TCP Reno Throughput in the Presence of Correlated Losses
Roman Dunaytsev, Yevgeni Koucheryavy, Jarmo Harju

Institute of Communications Engineering, Tampere University of Technology
P.O. Box 553, FIN-33101, Tampere, Finland

{dunaytse, yk, harju}@cs.tut.fi
Abstract. This paper presents a simple and accurate analytical model of TCP Reno throughput as a function of loss rate, average round trip time and receiver window size based on PFTK-model. The presented model refines previous work by careful examination of fast retransmit/fast recovery dynamics in the presence of correlated losses and taking into consideration slow start phase after timeout. The accuracy of the proposed model is validated against simulation results and compared with those of PFTK-model. Simulation results show that our model gives a more accurate estimation of TCP Reno throughput in the presence of correlated losses than PFTK-model.
1 Introduction
Transmission Control Protocol (TCP) is the de facto standard protocol for the reliable data delivery in the Internet. Recent measurements show that from 60% to 90% of today’s Internet traffic is carried by TCP [1]. Due to this fact, TCP performance modeling has received a lot of attention during the last decade [2].

One of the most known and wide referenced analytical models of TCP throughput of a bulk transfer is the model proposed by J. Padhye et al. in [3], also known as PFTK-model. This model describes steady-state throughput of a long-lived TCP Reno bulk transfer as a function of loss rate, average round trip time (RTT) and receiver window size. It assumes a correlated (bursty) loss model that is better suited for FIFO Drop Tail queues currently prevalent in the Internet.
Unfortunately, this model does not capture slow start phase after timeout and uses simplified representation of fast retransmit/fast recovery dynamics in the presence of correlated losses as having negligible effect on TCP Reno throughput. As it will be shown later, such simplifications can lead to overestimation of TCP Reno throughput. Since new analytical TCP models are often compared with PFTK-model (e.g., [4], [5], [6]) and use its resultant formula (e.g., [7], [8]), such inaccuracy in throughput estimation can lead to inaccurate results or incorrect conclusions.
In this paper, we propose a simple and more accurate steady-state TCP Reno throughput prediction model. This is achieved by careful examination of fast retransmit/fast recovery dynamics in the presence of correlated losses and taking into consideration slow start phase after timeout.
The reminder of the paper is organized as follows. Section 2 describes assumptions we made while constructing our model. Section 3 presents a detailed analysis of the proposed model. Section 4 describes model validation experiments, presents an analysis of the accuracy of our model and the one proposed in [3]. Finally, Section 5 concludes the paper.
2 Assumptions

The refined model we develop in this paper has exactly the same assumptions about endpoints and network as the model presented in [3]. We assume that the sender uses TCP Reno congestion control algorithm based on [9] and always has data to send. Since we are focusing on TCP performance, we do not consider sender or receiver delays and limitations due to scheduling or buffering. Therefore, we assume that the sender sends full-sized segments whenever the congestion window (
[image: image1.wmf]cwnd

) allows, while the receiver window (
[image: image2.wmf]rwnd

) is assumed to be always constant. We model TCP behavior in terms of “rounds” as done in [3], where a round starts when the sender begins the transmission of a window of segments and ends when the sender receives an acknowledgement (ACK) for one or more of these segments. It is assumed that the receiver uses delayed acknowledgement algorithm according to [10]. When modeling data transfer, we assume that segment loss happens only in the direction from the sender to the receiver. Moreover, we assume that a segment is lost in a round independently of any segments lost in other rounds, but at the same time segment losses are correlated within a round (i.e., if a segment is lost, all the remaining segments in that round are also lost). Such bursty loss model is a simplified representation of IP-datagram loss process in routers using FIFO Drop Tail queuing discipline. We assume that the time needed to send a window of segments is smaller than the duration of a round; it is also assumed that probability of segment loss and the duration of a round are independent of the window size. This can only be true for flows that are not fully utilizing the path bandwidth (i.e., in case of high level of statistical multiplexing).
3 The Model

According to [9], segment loss can be detected in one of two ways: either by the reception at the sender of “triple-duplicate” ACK or via retransmission timeout expiration. Similarly to [3], let us denote the first event as a TD (triple-duplicate) loss indication, and the second as a TO (timeout) loss indication. As in [3], we develop our model in several steps: when the loss indications are exclusively TD (Section 3.1); when the loss indications are both TD and TO (Section 3.2); and when the window size is limited by the receiver window (Section 3.3).
3.1 TD Loss Indications
In this section, we assume that all loss indications are exclusively TD and that the window size is not limited by the receiver window. In this case, according to [3], the long-term behavior of TCP Reno flow may be modeled as a cyclic process, where a cycle (denoted in [3] as a TD Period, TDP) is a period between two TD loss indications. For the
[image: image3.wmf]-th

i

 cycle
[image: image4.wmf](

)

1,2,...

i

=

 let
[image: image5.wmf]i

Y

 be the number of segments sent during the cycle,
[image: image6.wmf]i

A

 be the duration of the cycle and
[image: image7.wmf]i

W

 be the window size at the end of the cycle. Considering
[image: image8.wmf]{

}

i

i

W

 to be a Markov regenerative process with renewal reward process
[image: image9.wmf]{

}

i

i

Y

, we can define the long-term steady-state TCP throughput
[image: image10.wmf]B

 as
	
[image: image11.wmf][

]

[

]

.

EY

B

EA

=

	(1)

Fig. 1 shows the evolution of congestion window size during the
[image: image12.wmf]-th

i

 cycle according to [3].

[image: image13.emf]1i

i

TDP

i

X

no. of rounds

segments sent

1

2

3

4

5

6

2

1i

W

1234

i

W

bbb

i

last round

penultimate

round

i

...

ACKed

segment

lost

segment

...

i

Fig. 1. Segments sent during the
[image: image14.wmf]-th

i

 cycle (TD Period) according to [3]
A cycle starts immediately after a TD loss indication, hence the current
[image: image15.wmf]cwnd

 (expressed in segments) is set to
[image: image16.wmf]1

/2

i

W

-

. The receiver sends one ACK for every
[image: image17.wmf]-th

b

 segment that it receives (according to [10],
[image: image18.wmf]2

b

=

), so
[image: image19.wmf]cwnd

 increases linearly with a slope of
[image: image20.wmf]1/

b

 segments per round until the first segment loss occurs. Let us denote by
[image: image21.wmf]i

a

 the first segment loss in the
[image: image22.wmf]-th

i

 cycle and by
[image: image23.wmf]i

X

 the round where this loss occurs (see Fig. 1). According to the sliding window algorithm, after the segment
[image: image24.wmf]i

a

,
[image: image25.wmf](

)

1

i

W

-

 more segments are sent before a TD loss indication occurs and the current cycle ends.
Let us consider the evolution of congestion window size in the
[image: image26.wmf]-th

i

 cycle after the first TD loss indication. Taking into account the assumption about correlated losses within a round (i.e., if a segment is lost, so are all following segments till the end of the round), all segments following
[image: image27.wmf]i

a

 in the round
[image: image28.wmf]i

X

 (denoted in Fig. 1 as the penultimate round) are lost as well. Let us define
[image: image29.wmf]i

d

 to be the number of segments lost in the round
[image: image30.wmf]i

X

 and
[image: image31.wmf]i

b

 to be the number of segments sent in the next (and the last) round
[image: image32.wmf](

)

1

i

X

+

 of the
[image: image33.wmf]-th

i

 cycle (see Fig. 1). Similarly to [3], we assume that random variables
[image: image34.wmf]i

b

 and
[image: image35.wmf]i

d

 are uniformly distributed from zero to
[image: image36.wmf](

)

1

i

W

-

 and from one to
[image: image37.wmf]i

W

 correspondingly. Thus, taking into account that
[image: image38.wmf]iii

W

bd

=-

 we have
	
[image: image39.wmf][

]

[

]

[

]

[

]

11

,.

22

EWEW

EE

bd

-+

==

	(2)

After a TD loss indication the sender enters the fast retransmit/fast recovery phase and performs a retransmission of the lost segment. The slow start threshold (
[image: image40.wmf]ssthresh

) and the current value of
[image: image41.wmf]cwnd

 are updated according to [9] as
	
[image: image42.wmf](

)

max/2,2,,

DupACK

ssthreshFlightSizeWssthreshN

¢

==+

	(3)

where
[image: image43.wmf]FlightSize

 is the number of segments that has been sent, but not yet acknowledged;
[image: image44.wmf]W

¢

 is the value of
[image: image45.wmf]cwnd

 during fast recovery phase;
[image: image46.wmf]DupACK

N

 is the number of received duplicate ACKs.
Since
[image: image47.wmf][

]

DupACK

ENE

b

éù

=

ëû

,
[image: image48.wmf][

]

[

]

EFlightSizeEW

=

 and using (2), we can determine
[image: image49.wmf][

]

EW

¢

 as
	
[image: image50.wmf][

]

[

]

[

]

[

]

[

]

1

1

.

222

DupACK

EWEW

EWEssthreshENEW

-

éù

¢

=+=+=-

ëû

	(4)

As
[image: image51.wmf][

]

[

]

EWEFlightSize

¢

<

, it is expected that the sender will not send new segments in the fast recovery phase. After the successful retransmission of the segment
[image: image52.wmf]i

a

 the sender will receive new ACK, indicating that the receiver is waiting for the segment
[image: image53.wmf](

)

1

i

a

+

. As a result of receiving this new ACK, the phase of fast retransmit/fast recovery ends and according to [9] the new value of
[image: image54.wmf]cwnd

 is set as
[image: image55.wmf]Wssthresh

=

, where
[image: image56.wmf]ssthresh

 is from (3). Since
[image: image57.wmf]FlightSize

 is still larger than the new value of
[image: image58.wmf]cwnd

, the sender cannot transmit new segments, therefore this ACK will be the single. As the sender will not be able to invoke the fast retransmit/fast recovery algorithms again, then it will wait for the expiration of retransmission timeout (
[image: image59.wmf]RTO

), which was set after the successful retransmission of the segment
[image: image60.wmf]i

a

 (in accordance with [11], step 5.3). After the
[image: image61.wmf]RTO

 expiration, the values of
[image: image62.wmf]cwnd

 and
[image: image63.wmf]ssthresh

 are set as
[image: image64.wmf]1

W

=

 and
[image: image65.wmf](

)

max/2,2

ssthreshFlightSize

=

, and the slow start phase begins.
Thus, in the presence of correlated losses and when the first loss is detected via a TD loss indication, the following sequence of steps is expected:
· initialization of the fast retransmit and fast recovery algorithms, retransmission of the first lost segment;

· awaiting for the
[image: image66.wmf]RTO

 expiration, which was set after the successful retransmission of the first lost segment;
· initialization of the slow start algorithm.

Our observation is well agreed with the results from [12], showing that TCP Reno has performance problems when multiple segments are dropped from one window of segments and that these problems result from the need to wait for the
[image: image67.wmf]RTO

 expiration before reinitiating data flow. Moreover, empirical measurements from [3] show that the significant part of loss indications (in average 71%) is due to timeouts, rather than TD loss indications.
In order to include the fast retransmit/fast recovery phase and the slow start phase, we define a cycle to be a period between two TO loss indications (besides periods between two consecutive timeouts). Therefore, a cycle consists of the slow start phase, congestion avoidance phase, fast retransmit/fast recovery phase and one timeout. An example of the evolution of congestion window size is shown in Fig. 2, where the congestion avoidance phase (TD Period in [3]) is supplemented with the slow start phase at the beginning and the fast retransmit/fast recovery phase with one timeout at the end.

[image: image68.emf]RTO

cyclei

i

N

i

X

slow start

slow start

...

i

N

121

no. of rounds

segments sent

2

1i

W

i

W

i

ACKed segment

lost segment

...

...

2

i

W

ssthresh

Fig. 2. Evolution of congestion window size during the
[image: image69.wmf]-th

i

 cycle, supplemented with the slow start phase at the beginning and the fast retransmit/fast recovery phase with one timeout at the end of the congestion avoidance phase
Observe that
[image: image70.wmf]iii

YW

a

=+

, thus we have
	
[image: image71.wmf][

]

[

]

[

]

.

EYEEW

a

=+

	(5)

The expected number of segments sent in a cycle up to and including the first lost segment is given in [3] as
	
[image: image72.wmf][

]

(

)

1

1

1

1,

k

k

Eppk

p

a

¥

-

=

=-××=

å

	(6)

where
[image: image73.wmf]p

 is the probability that a segment is lost, given that it is either the first segment in its round or the preceding segment in its round is not lost.
As in [3], let
[image: image74.wmf]ij

r

 be the duration of the
[image: image75.wmf]-th

j

 round of
[image: image76.wmf]-th

i

 cycle (
[image: image77.wmf],1,2,...

ij

=

). If we assume
[image: image78.wmf]ij

r

 to be random variables independent of
[image: image79.wmf]cwnd

, then we have
	
[image: image80.wmf][

]

[

]

[

]

[

]

[

]

[

]

2,

ERTO

EAErENEX

Er

æö

=×+++

ç÷

ç÷

èø

	(7)

where
[image: image81.wmf][

]

ErRTT

=

;
[image: image82.wmf][

]

ERTORTO

=

;
[image: image83.wmf][

]

EN

 is the expected number of slow start rounds.

In order to derive
[image: image84.wmf][

]

EX

 and
[image: image85.wmf][

]

EW

, let us consider the evolution of
[image: image86.wmf]cwnd

 as a function of number of rounds. Similarly to [3], we assume that
[image: image87.wmf]1

/2

i

W

-

 and
[image: image88.wmf]/

i

Xb

 are integers. Therefore, we have
	
[image: image89.wmf]1

1,1,2,...

2

ii

i

WX

Wi

b

-

=+-=

	(8)

Then the number of segments sent during the congestion avoidance (CA) phase of the
[image: image90.wmf]-th

i

 cycle can be defined as
	
[image: image91.wmf]1

11

0

1.

222

i

X

b

CA

iiiii

iii

k

WXWXX

Ykb

b

bb

-

--

=

×

æöæö

=+×+=+×-+

ç÷ç÷

èøèø

å

	(9)

Combining (8) and (9), we obtain
	
[image: image92.wmf]1

.

22

CA

ii

iii

XW

YW

b

-

æö

=×++

ç÷

èø

	(10)

Similarly to [3], we assume
[image: image93.wmf]{

}

i

i

X

 and
[image: image94.wmf]{

}

i

i

W

 to be mutually independent sequences of i.i.d. random variables. After the transformation of (8) we get
	
[image: image95.wmf][

]

[

]

1.

2

EW

EXb

æö

=×+

ç÷

ç÷

èø

	(11)

Hence
	
[image: image96.wmf][

]

[

]

[

]

[

]

[

]

[

]

331

1.

22422

CA

EXEWbEWEWEW

EYE

b

æö

×××-

éù

=×+=×++

ç÷

ëû

ç÷

èø

	(12)

According to [7], the number of segments sent during the slow start (SS) phase can be closely approximated by a geometric series. At the same time it is known from [9], that the receiver sends an immediate duplicate ACK when out-of-order segment arrives (i.e.,
[image: image97.wmf]1

b

=

). Then we can approximate
	
[image: image98.wmf]211

1

122...2221.

N

SSNkN

k

Y

--

=

=++++==-

å

	(13)

The required number of slow start rounds to send
[image: image99.wmf]SS

Y

 segments can be expressed as
	
[image: image100.wmf](

)

2

log1.

SS

NY

=+

	(14)

Taking into account, that in the slow start phase of the
[image: image101.wmf]-th

i

 cycle
[image: image102.wmf]cwnd

 growths exponentially from one to
[image: image103.wmf]1

/2

i

ssthreshW

-

=

, from (13) we have

	
[image: image104.wmf][

]

[

]

1

2.

2

EN

EW

-

=

	(15)

Combining (13), (14) and (15), we obtain
	
[image: image105.wmf][

]

1.

SS

EYEW

éù

=-

ëû

	(16)

By substituting (16) in (14) and taking into consideration (3), we get the expected number of slow start rounds as
	
[image: image106.wmf][

]

[

]

(

)

2

maxlog,2.

ENEW

=

	(17)

Based on (5), (12) and (16) and taking into account the retransmitted segment in the fast retransmit phase, the following system of equations can be defined as
	
[image: image107.wmf][

]

[

]

[

]

[

]

[

]

[

]

[

]

1

31

111

422

EYEW

p

bEWEWEW

EYEW

ì

=+

ï

ï

í

æö

××-

ï

=-+×+++

ç÷

ç÷

ï

èø

î

	(18)

Solving this system of equations for
[image: image108.wmf][

]

EW

, we get
	
[image: image109.wmf][

]

2

238423

.

333

bpb

EW

bbpb

+×+×+×

æöæö

=-++

ç÷ç÷

××××

èøèø

	(19)

In order to show that the slow start phase will enter in the congestion avoidance phase before the first segment loss occurs, we have to prove that
[image: image110.wmf][

]

SS

EYE

a

éù

<

ëû

 (i.e.,
[image: image111.wmf][

]

1

1

EW

p

-<

). Solving this inequality, we get
[image: image112.wmf]3

9124

b

bpb

p

×

+××+×>

. The last inequality holds since
[image: image113.wmf]0

p

>

 and
[image: image114.wmf]1

b

³

.
By substituting (11) and (17) in (7), we have
	
[image: image115.wmf][

]

[

]

(

)

[

]

2

maxlog,212.

2

EW

RTO

EARTTEWb

RTT

æö

æö

ç÷

=×+×+++

ç÷

ç÷

ç÷

èø

èø

	(20)

Combining (1), (5), (6), (19) and (20), we obtain

	
[image: image116.wmf][

]

[

]

(

)

[

]

2

1

,

maxlog,212

2

EW

p

B

EW

RTO

RTTEWb

RTT

+

=

æö

æö

ç÷

×+×+++

ç÷

ç÷

ç÷

èø

èø

	(21)

where
[image: image117.wmf][

]

EW

 is given in (19).
3.2 TD and TO Loss Indications

A TO loss indication happens when segments (or ACKs) are lost and less than three duplicate ACKs are received. Note that in this case there will be no fast retransmit/fast recovery phase in a cycle. Similarly to [3], we define
[image: image118.wmf]ij

W

 to be the window size at the end of the
[image: image119.wmf]-th

j

 cycle
[image: image120.wmf](

)

,1,2,...

ij

=

,
[image: image121.wmf]ij

A

 to be the duration of the
[image: image122.wmf]-th

j

 cycle,
[image: image123.wmf]TO

i

Z

 to be the duration of a sequence of timeouts,
[image: image124.wmf]TD

i

Z

 to be the duration of time interval between two consecutive timeout sequences,
[image: image125.wmf]TDTO

iii

SZZ

=+

. The number of transmitted segments during the last cycle and the duration of the last cycle can be approximated as
[image: image126.wmf][

]

(

)

1

EY

-

 and
[image: image127.wmf][

]

(

)

EARTT

-

 (where
[image: image128.wmf][

]

EY

 is from (5) and
[image: image129.wmf][

]

EA

 is from (20)).
From [3] we can define long-term steady-state TCP throughput
[image: image130.wmf]B

 as
	
[image: image131.wmf][

]

[

]

[

]

[

]

[

]

[

]

[

]

(

)

[

]

(

)

1

1

,

TO

TO

EYQER

EnEYER

B

EnEAEZRTT

EAQEZRTT

+×-

×+-

==

éù

×+-

éù

+×-

ëû

ëû

	(22)

where
[image: image132.wmf][

]

ER

 is the expected number of segments sent during timeout sequence;
[image: image133.wmf]TO

EZ

éù

ëû

 is the expected duration of timeout sequence;
[image: image134.wmf][

]

1

QEn

=

 is the probability that a loss indication ending a cycle is a TO.
The probability that a loss indication is a TO under the current congestion window size
[image: image135.wmf]w

 is given in [3] as
	
[image: image136.wmf]µ

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

333

111111

min1,,

11

w

w

ppp

Qw

p

-

æö

--×+-×--

ç÷

=

ç÷

--

ç÷

èø

	(23)

which can be approximated for small values of
[image: image137.wmf]p

 as
	
[image: image138.wmf]µ

(

)

µ

[

]

(

)

3

min1,,,

QwQQEW

w

æö

»»

ç÷

èø

	(24)

where
[image: image139.wmf][

]

EW

 is given in (19).

According to [3],
[image: image140.wmf][

]

ER

 can be defined as
	
[image: image141.wmf][

]

1

.

1

ER

p

=

-

	(25)

Note that in contrast to [3], the duration of the first timeout from the sequence of consecutive timeouts is incorporated in the duration of a cycle. Therefore, the duration of the sequence of timeouts (excepting the first timeout) is
	
[image: image142.wmf](

)

[

]

(

)

(

)

22,when 2,6,

62646,when 7,

k

k

RTOk

L

kRTOk

ì

-×Î

ï

=

í

+×-×³

ï

î

	(26)

and the expectation of
[image: image143.wmf]TO

Z

 is
	
[image: image144.wmf](

)

1

2

23456

1

22481632

.

1

TOk

k

k

EZLpp

pppppp

RTO

p

¥

-

=

éù

=××-=

ëû

×+×+×+×+×+×

=×

-

å

	(27)

Combining (5), (20), (23) and (27), we obtain

	
[image: image145.wmf]µ

(

)

(

)

µ

(

)

(

)

2

1

1

,

maxlog,212

21

p

EWQEW

pp

B

EWfp

RTO

RTTEWbQEWRTORTT

p

RTT

++

éùéù

ëûëû

-

=

æö

æöæö

éù

ëû

ç÷

+++++-

ç÷ç÷

éùéù

ëûëû

ç÷ç÷

ç÷

-

èøèø

èø

	(28)

where
	
[image: image146.wmf](

)

23456

22481632.

fppppppp

=×+×+×+×+×+×

	(29)

3.3 The Impact of Receiver Window Size
Let us denote by
[image: image147.wmf]max

W

 the receiver window size and by
[image: image148.wmf][

]

u

EW

 the unconstrained window size. Similarly to [3], we assume that
[image: image149.wmf][

]

max

u

EWW

<

 leads to
[image: image150.wmf][

]

[

]

u

EWEW

»

 (where
[image: image151.wmf][

]

EW

 is from (19)) and
[image: image152.wmf][

]

max

u

EWW

³

 leads to
[image: image153.wmf][

]

max

EWW

»

. Thus, using derivation from [3] and taking into account that
	
[image: image154.wmf](

)

[

]

2

max

maxmax

max

3

1

,

842

CA

bW

bWW

EYEVW

××

×-

éù

=-+×+

ëû

	(30)

we obtain the following system of equations
	
[image: image155.wmf][

]

[

]

(

)

[

]

max

2

max

maxmax

maxmax

1

3

1

11

842

EYW

p

bW

bWW

EYWEVW

ì

=+

ï

ï

í

××

×-

ï

=-+-+×++

ï

î

	(31)

Hence, the expected number of rounds when the window size remains constant is
	
[image: image156.wmf][

]

maxmax

max

423

1

428

bpWpbW

EV

pW

+××+×××

=--

××

	(32)

and
	
[image: image157.wmf][

]

maxmax

max

42

1

.

842

bWbpWp

EX

pW

×+××+×

=+-

××

	(33)

Therefore
	
[image: image158.wmf][

]

(

)

maxmax

2max

max

42

3

maxlog,2.

842

bWbpWp

RTO

EARTTW

pW

RTT

×+××+×

=×++++

××

æö

ç÷

ç÷

èø

	(34)

In conclusion, the complete expression of TCP throughput can be represented by the following expression
	
[image: image159.wmf][

]

$

[

]

(

)

[

]

(

)

[

]

$

[

]

(

)

(

)

[

]

$

(

)

(

)

$

(

)

(

)

2

max

maxmax

maxmax

2maxmax

max

ma

1

1

,

maxlog,212

21

when ,

1

1

,

42

3

maxlog,2

8421

when

p

EWQEW

pp

EWfp

RTO

RTTEWbQEWRTORTT

p

RTT

WEW

B

p

WQW

pp

fp

bWbpWp

RTO

RTTWQWRTORTT

pWp

RTT

W

++

-

+++++-

-

>

=

++

-

++

+++++-

-

æö

æö

æö

ç÷

ç÷

ç÷

èø

èø

èø

æö

æö

ç÷

ç÷

èø

èø

[

]

x

.

EW

£

ì

ï

ï

ï

ï

ï

ï

í

ï

ï

ï

ï

ï

ï

î

	(35)

4 Model Validation through Simulation

In order to validate the proposed model and compare it with the one presented in [3], we compared the results obtained from the both analytical models against simulation results obtained from ns-2 [13]. We performed experiments using the well-known single bottleneck (“dumbbell”) network topology. In this topology all access links have a propagation delay of 1 ms and a bandwidth of 10 Mbps. The bottleneck link is configured as a Drop Tail link and has a propagation delay of 8 ms, bandwidth of 2 Mbps and a buffer size of 50 packets. To model TCP Reno connection we used Agent/TCP/Reno as a TCP Reno sender, Agent/TCPSink/DelAck as a TCP receiver with delayed acknowledgement algorithm and FTP as an application for transmitting infinite amount of data. We set TCP segment size to be 1460 bytes and maximum receiver window size (
[image: image160.wmf]max

W

) to be 10 segments.
It has been noted in [14] that Web-traffic tends to be self-similar in nature and it was shown in [15] that superposition of many ON/OFF sources whose ON/OFF times are independently drawn from heavy-tailed distributions such as Pareto distribution can produce asymptotically self-similar traffic. Thus, we modeled the effects of competing Web-like traffic and high level of statistical multiplexing as a superposition of many ON/OFF UDP sources. Similarly to [16], in our experiments we set the shape parameter of Pareto distribution to be 1.2, the mean ON time to be 1 second and the mean OFF time to be 2 seconds. During ON times the UDP sources transmit with the rate of 12 kbps. The number of UDP sources was varied between 220 and 420 with the step of 10 sources. For each step we ran 100 simulation trials with a simulation time of 3600 seconds for each trial. In order to remove transient phase at the beginning of simulation, the collection of data was started after 60 seconds from the beginning of the simulation.
As in [3], in order to estimate the value of
[image: image161.wmf]p

, we used the ratio of the total number of loss indications to the total number of segments sent as an approximate value of
[image: image162.wmf]p

. Fig. 3a compares our model and the one presented in [3] against the simulation results. It easy to see, that the predicted values of throughput by the proposed model are much closer to the simulation results.
To quantify the accuracy of the both analytical models we computed the average error using the following expression from [3]:
	
[image: image163.wmf](

)

(

)

(

)

predictedobserved

observations

observed

Average error.

number of observations

BpBp

Bp

-

=

å

	(36)

As shown in Fig. 3b, the proposed model has the average error smaller than 0.05 over a wide range of loss rates.

	
[image: image164.wmf]0

0.02

0.04

0.06

0.08

0.1

0.12

0

10

20

30

40

50

60

70

Simulated

Proposed

PFTK-model

Frequency of Loss Indications (p)

Average Throughput (segments/sec)

	
[image: image165.wmf]0

0.02

0.04

0.06

0.08

0.1

0.12

0

0.2

0.4

0.6

0.8

1

Proposed

PFTK-model

Frequency of Loss Indications (p)

Average Error

	a)
	b)

Fig. 3. Average throughput (a) and average error (b) of the proposed and PFTK models
5 Conclusion
In this paper we developed an analytical model for predicting TCP Reno throughput in the presence of correlated losses. The model is based on the one proposed in [3] and improves it by taking into consideration a fast retransmit/fast recovery dynamics and slow start phase after timeout. The presented model has the average error smaller than 0.05 over a wide range of loss rates with the mean of 0.03, while the one, proposed in [3] performs well when the loss rate is quite small and significantly overestimates TCP Reno throughput in the middle-to-high loss rate range.
References
1. M. Fomenkov, K. Keys, D. Moore, and k. claffy. Longitudinal study of Internet traffic in 1998-2003. Technical Report, Cooperative Association for Internet Data Analysis (CAIDA), 2003.
2. J. Olsen. Stochastic modeling and simulation of the TCP protocol. PhD thesis, Uppsala University, Sweden, 2003.
3. J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling TCP Reno performance: a simple model and its empirical validation. IEEE/ACM Transactions on Networking, vol. 8, no. 2, pp. 133-145, April 2000.
4. S. Fortin and B. Sericola. A Markovian model for the stationary behavior of TCP. Technical Report RR-4240, IRISA-INRIA, France, September 2001.
5. B. Sikdar, S. Kalyanaraman, and K. Vastola. An integrated model for the latency and steady state throughput of TCP connections. Performance Evaluation, vol. 46, no. 2-3, pp. 139-154, October 2001.
6. O. Bogoiavlenskaia, M. Kojo, M. Mutka, and T. Alanko. Analytical Markovian model of TCP congestion avoidance algorithm performance. Technical Report C-2002-13, University of Helsinki, Finland, April 2002.
7. N. Cardwell, S. Savage, and T. Anderson. Modeling TCP latency. Proc. IEEE INFOCOM’00, vol. 3, Tel Aviv, pp. 1742-1751, March 2000.
8. S. Fu and M. Atiquzzman. Modeling TCP Reno with spurious timeouts in wireless mobile environment. Proc. 12-th International Conference on Computer Communications and Networks, Dallas, October 2003.
9. M. Allman, V. Paxson, and W. Stevens. TCP congestion control. IETF RFC 2581, April 1999.
10. R. Braden. Requirements for Internet hosts. IETF RFC 1122, October 1989.
11. V. Paxson and M. Allman. Computing TCP’s retransmission timer. IETF RFC 2988, November 2000.
12. K. Fall and S. Floyd. Simulation-based comparison of Tahoe, Reno and SACK TCP. ACM SIGCOMM Computer Communication Review, vol. 26, no. 3, pp. 5-21, July 1996.
13. UCB/LBNL/VINT. The network simulator - ns-2. http://www.isi.edu/nsnam/ns/
14. K. Park, G. Kim, and M. Crovella. On the relationship between file sizes, transport protocols and self-similar network traffic. Technical Report 1996-016, Boston University, USA, August 1996.
15. W. Willinger, M. Taqqu, R. Sherman, and D. Wilson. Self-similarity through high variability: statistical analysis of Ethernet LAN traffic at the source level. IEEE/ACM Transactions on Networking, vol. 5, no. 1, pp. 71-86, February 1997.
16. J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. A model-based TCP-friendly rate control protocol. Proc. NOSSDAV, Basking Ridge, pp. 137-151, June 1999.
_1162583988.unknown

_1162606475.unknown

_1163022792.unknown

_1164666315.unknown

_1170609414.unknown

_1171758476.unknown

_1171761777.unknown

_1171762377.unknown

_1171784311.bin

_1171784366.bin

_1171762522.unknown

_1171761822.unknown

_1171759302.unknown

_1171760079.unknown

_1171759572.unknown

_1171759127.unknown

_1171758153.vsd

_1171758439.unknown

_1171758475.unknown

_1171757754.unknown

_1171757784.unknown

_1171757854.unknown

_1170609458.unknown

_1164668400.unknown

_1164668438.unknown

_1164675209.unknown

_1170609413.unknown

_1164668529.unknown

_1164668414.unknown

_1164667080.unknown

_1164667196.unknown

_1164667875.unknown

_1164667195.unknown

_1164667079.unknown

_1164667078.unknown

_1163023410.vsd

_1164663856.unknown

_1164666219.unknown

_1164666314.unknown

_1164663901.unknown

_1163366373.unknown

_1163367426.unknown

_1164416435.unknown

_1164419753.unknown

_1164416283.unknown

_1163366381.unknown

_1163335812.unknown

_1163022962.unknown

_1163023051.unknown

_1163023091.unknown

_1163023116.unknown

_1163023117.unknown

_1163023115.unknown

_1163023090.unknown

_1163023005.unknown

_1163023050.unknown

_1163022882.unknown

_1163022933.unknown

_1163022961.unknown

_1163022847.unknown

_1162615139.unknown

_1162616642.unknown

_1162617926.unknown

_1162620303.unknown

_1162620346.unknown

_1162620731.unknown

_1162621172.unknown

_1162621254.unknown

_1162620865.unknown

_1162620444.unknown

_1162620313.unknown

_1162620057.unknown

_1162620292.unknown

_1162618394.unknown

_1162617438.unknown

_1162617871.unknown

_1162616929.unknown

_1162615931.unknown

_1162616134.unknown

_1162616324.unknown

_1162616422.unknown

_1162615988.unknown

_1162615762.unknown

_1162615841.unknown

_1162615713.unknown

_1162606784.unknown

_1162607749.unknown

_1162607811.unknown

_1162608562.unknown

_1162607247.unknown

_1162606643.unknown

_1162606735.unknown

_1162606545.unknown

_1162603184.unknown

_1162603817.unknown

_1162604654.unknown

_1162604953.unknown

_1162605510.unknown

_1162604680.unknown

_1162603944.unknown

_1162604615.unknown

_1162603943.unknown

_1162603547.unknown

_1162603742.unknown

_1162603754.unknown

_1162603578.unknown

_1162603315.unknown

_1162603508.unknown

_1162603279.unknown

_1162592239.unknown

_1162601644.unknown

_1162602300.unknown

_1162602425.unknown

_1162601788.unknown

_1162596069.unknown

_1162598637.unknown

_1162593584.unknown

_1162593687.unknown

_1162592253.unknown

_1162591365.unknown

_1162591556.unknown

_1162592223.unknown

_1162591492.unknown

_1162591294.unknown

_1162591310.unknown

_1162590967.unknown

_1162580397.unknown

_1162582809.unknown

_1162582988.unknown

_1162583545.unknown

_1162583691.unknown

_1162583493.unknown

_1162582811.unknown

_1162582907.unknown

_1162582810.unknown

_1162580832.unknown

_1162581167.unknown

_1162582520.unknown

_1162582765.unknown

_1162582808.unknown

_1162582630.unknown

_1162582250.unknown

_1162580893.unknown

_1162580919.unknown

_1162580848.unknown

_1162580558.unknown

_1162580669.unknown

_1162580488.unknown

_1162419648.unknown

_1162419991.unknown

_1162580117.unknown

_1162580219.unknown

_1162420057.unknown

_1162419842.unknown

_1162419895.unknown

_1162419790.unknown

_1162417740.unknown

_1162419293.unknown

_1162417815.unknown

_1162417911.unknown

_1162416340.unknown

_1162416375.unknown

_1162416311.unknown

