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Abstract. We present a framework for developing a traffic generator that 
produces massive, realistic network payloads. The techniques and methods in 
this article can be easily applied to any stress workload generator for network 
traffic simulation. Here, as the system to be tested, we use the UMTS/GPRS 
backbone including SGSN and GGSN, which utilizes GPRS Tunnelling 
Protocol (GTP-U) user plane messages to carry user data packets. The proposed 
workload generator system is characterized by high, real traffic load, 
economical standard hardware, scalability, and flexible extensibility. A large 
number of independent participants, such as mobile users and Internet servers, 
are modelled. The realism of traffic is achieved by using a layered modelling 
approach starting from the user/application level and ending at the network 
layer. High system throughput is obtained by exploiting preconstructed packet 
buffers (templates), packet filters, network interface polling, and an efficient, 
adjustable time resolution scheduler. 

1 Introduction 

General Packet Radio Services (GPRS) introduced new network elements in the 
public land mobile network architecture. The new elements are the Serving GPRS 
Support Node (SGSN) and the Gateway GPRS Support Node (GGSN). The role of 
the SGSN is to handle mobility management, authentication, and register functions. 
The GGSN provides access to a public data network, such as the Internet or the X.25. 
From the external networks' point of view, it is a router to a subnetwork. These two 
nodes are directly interconnected in the network architecture and form the core of the 
mobile data network. Therefore, the requirements on them are very high and careful 
attention must be paid to network planning and testing before the network is launched 
for public use. If the performance of the network does not satisfy customers' demands, 
then the situation can lead to the loss of customers. It is not unusual that a GSM 
network includes only one GGSN, through which all data transfers between Internet 
servers and subscribers' terminals are routed. In 3G networks (such as UMTS) the role 
of the nodes is similar, but the requirements are even higher. The services for 3G 
networks include high bandwidth, low latency applications, such as video-calls. 
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Network testing can be seen as a two-phase process. A communication network is 
a distributed system with many different components communicating through 
standard interfaces. Thus, the communication between nodes has to be tested first. 
This type of test can be called an interoperability test. Interoperability tests cross-
check the functionality of network elements. In the second phase of network testing, 
the goal is to test the throughput of the network and to find the limits of and 
bottlenecks in the system. Such tests are known as stress tests. To perform the stress 
test, a workload generator, which creates data traffic for the network being tested, is 
needed. Also, the stress test generator measures the performance of the system being 
tested. 

In case of SGSN and GGSN stress testing, the performance and quality 
requirements for the workload generator are at least as high as the requirements for 
the actual support nodes. As mentioned above, a GPRS/UMTS network can include 
only one GGSN; this node must be able to handle data packets at a rate of several 
Gbps. Therefore, if engineers want to massively test the core network (i.e., SGSN and 
GGSN of the network), they need a workload generator that is able to generate data 
traffic at such a high rate that it saturates the network. Moreover, in addition to 
answering questions such as “How many packets per second can the nodes handle?” 
and “What is the actual throughput?”, engineers are also interested in testing the 
quality of services (QoS) and in observing the behaviour of the network from the 
mobile user's point of view. Thus, the workload generator must allow engineers to 
describe the generated traffic in terms of mobile users and applications. 

Our approach to using a workload generator for testing the SGSN and GGSN 
consists of two parts, a control and signalling module and a data generation module. 
The first module performs signalling and control communication with the node being 
tested; the second module takes care of data generation. This article concentrates on 
the data generation module, which utilizes the GPRS Tunnelling Protocol (GTP). We 
describe a methodology for an efficient and inexpensive implementation of a stress 
workload generator. 

Existing Generators and Related Work 
Generally, a generator, which sends data through a network at some level of 
abstraction, simulates a real process or an application. The sending and receiving of 
data packets, which takes place in a discrete time, is considered to be an event in the 
system. Thus, the generator can be seen as a discrete event simulator. Methods and 
modelling techniques developed for discrete event simulation are used during an 
implementation of the generator. The level of abstraction used during the design of a 
workload generator plays an important role. Some workload generators use models 
represented by a stochastic process that simulate only the packet size and the arriving 
time of the packets at a low-level network interface. Other types of workload 
generators are built on models that try to describe user interaction with a system. Such 
models have a layered architecture and allow a user to create a large set of various 
user-behaviour profiles [5]. Moreover, the layered models can produce traffic patterns 
that are more realistic. Naturally, the generators implementing the layered approach 
are more complex and require more processing time during simulation than generators 
using one stochastic process. As a result, however, the performance of the system can 
be observed at both user and application levels. 
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Demands of the current market for such generators and testing tools have inspired 
companies around the world to create the appropriate products. Among such tools are 
MGTS i3000 by Catapult Communications [2], Cellular Performer Analyser by 
RADCOM[13], Cutting edge GPRS Support Node Testing offered by Hughes 
Software Systems [6], and EAST for UMTS by ipNetfusion [9]. These products are 
complex test suites for testing many network interfaces. 

2 Architecture 

The endpoints communicating via a GPRS/UMTS network are mobile terminals and 
Internet servers. We designed the data generation module (DGM) framework to be 
based on the simulation of these elements. Therefore, the basic item in the data 
generation module is a model that represents an application running on a mobile 
terminal (e.g., a WAP or WWW browser) or, correspondingly, an Internet server 
providing a service (e.g., an HTTP server). Obviously, the data traffic that is 
generated depends on the models running in the system. In other words, the data 
generation process is controlled through the models. The control over models includes 
creating, starting, stopping, and deleting models and setting model characteristics.  

Scalability 
DGM is designed to run on “inexpensive, standard pieces of hardware”, which are, in 
practice, personal computers or entry-level servers. To increase generator throughput, 
we can add more computers to DGM. These issues lead us to the framework shown in 
Figure 1.  

 

Fig. 1. DGM scheme 

 
DGM consists of two control nodes and several data nodes. The controls nodes are 
DGM Client Control (DGCC) and DGM Server Control (DGSC). They provide 
control interfaces for users of DGM. DGM Client (DGC) and DGM Server (DGS) are 
data nodes that host the models. Data traffic is generated between the DGM data 
nodes. 
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We consider the GPRS/UMTS core network as the system under test as shown in 
Figure 1. We simulate the mobile terminals and Internet servers communicating over 
the network. However, the communication channel between the end elements also 
includes other components of a mobile network, see Figure 2. In order to test SGSN 
and GGSN, the DGM data nodes replace all other parts of the communication 
channel. The number of replaced components depends on each test scenario. 
Examples of the test scenarios are displayed in Figure 3. The scenarios show that the 
DGM clients can occupy the place of MT, GERAN/UTRAN, and possibly SGSN. 
Correspondingly, the DGM servers substitute Internet servers located in the public 
data network (PDN) and possibly GGSN during testing. 

 

Fig. 2. GTP-U in GPRS 

 

Fig. 3. Test scenarios 

 
Scenario 1 shows the stress test where both SGSN and GGSN are involved. The 

DGM clients model traffic that comes from UTRAN/GERAN. Between the DGM 
client, SGSN, and GGSN, the data are transferred over a GTP tunnel. After passing 
through GGSN, normal IP network traffic is used. The DGM servers simulate Internet 
servers with various services. In scenario 2, only SGSN is being tested. In this case, 
the DGM clients replace UTRAN/GERAN and DGM servers replace GGSN. Both 
connections use GTP tunnelling. Scenario 3 is similar to the first one, except that 
DGM clients also simulate SGSN nodes. 
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2.1 Control Nodes 

The control nodes provide an interface for simulation management. The duties of the 
control node include three main control tasks: monitoring and regulation of the load 
on system resources, user/application model manipulation, and statistical information 
reporting. 

The data that are generated are sent through GTP-U tunnels; thus, the 
responsibilities of the resource management include taking care of the assignment of 
tunnel end-point identifiers and distributing load among the data nodes. In the 
simplest scenario, the client control and the server control distribute the load among 
the data node uniformly by assigning the same number of models to each data node. If 
system speeds of the data nodes vary, the loads of the nodes have to be monitored. In 
this case, a new model would be created at the node with the lowest load. This 
approach, however, fails to take into account varying states of the models. A large set 
of idle nodes might activate simultaneously, thus overloading a node. Consequently, 
the uniform distribution of the models among the data nodes and running the nodes on 
the same hardware appears to be safer. 

DGCC chooses the DGC where a model is going to be created. This information is 
not known outside the DGM; therefore, all model manipulation has to be done 
through the control interface of DGCC. For this purpose a unique identification 
number is associated with each model. Model manipulation is implemented by 
sending commands, including the identification number, to DGCC. 

Statistics reporting utilizes the client-server architecture. The statistics about the 
simulation can be retrieved from the system by any process connected to DGCC and 
by requesting a report of the statistics. After the request is received by DGCC, the 
statistics are periodically sent to the process. Then the process can visualize and/or 
store the statistics data in its own way. The statistics measured by the system include 
36 values, such as current traffic volume (bits/s, packets/s), average round trip time, 
TCP retransmissions, and number of dropped IP packets. The values are measured for 
each protocol and traffic class. 

2.2 Data Nodes 

DGC and DGS are discrete event simulator components of the DGM. Both client and 
server have the same design schema, which is shown in Figure 4. The process flow of 
the data node is based on the processing of events that appear asynchronously in the 
system.  
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Fig. 4. Data node scheme 

A Layered Approach to Implementing Models 
The model is an object that simulates an application from the user's point of view. 
Inside DGM, the model is a composite of smaller model entities arranged in a layered 
hierarchy. Because DGM simulates network applications, it is obvious that the model 
entities correspond to the protocol hierarchy; see Figure 4. The lowest model entity 
simulates the network layer protocol, which is in our case Internet Protocol (IP). The 
throughput layer is not usually part of the ordinary protocol stack. Because the 
workload generator is intended to simulate a mobile environment, where the 
connection speed is limited by Packet Data Protocol context (PDP), this layer is 
included in the hierarchy. The purpose of this layer is to artificially limit the 
communication speed according to the PDP context assigned to the model. The next 
highest layer is the transport layer. Model entities of transport protocols such as UDP 
and TCP are found at this level. The User/Application model entity is situated at the 
top of the layered hierarchy. This layer is responsible for the simulation of user and 
application behaviour. The top layer may be further divided into two separate layers. 
This division offers more flexibility during concurrent simulations of different user's 
profiles [5]. In any case, the hierarchy presented here already gives testers the 
possibility to observe the behaviour of each protocol layer as the load in the tested 
system increases. This is achieved by gathering statistics for each modelled layer. 

The model entities in the layered hierarchy need to interact with other models. For 
this purpose, every layer provides a predefined set of services to a higher layer. The 
communication between layers is accomplished by means of service primitives. The 
service primitives are divided into four sets: requests, indications, responses, and 
confirmations. The request primitive is used when a higher layer requests a service 
from the next lower layer. The lower layer invokes the indication primitive in the next 
higher layer in order to provide information about activity on the lower level. The 
response primitive is used to confirm the receipt of the indication primitive received 
from the next lower layer. In the same sense, the confirmation primitive notifies the 
next higher layer about the successful accomplishment of the activity invoked by the 
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request primitive. One request primitive usually requires a couple of other request 
primitives in the lower layer, and a couple of indications in the lower layer are needed 
to generate the indication in the next higher layer. All this depends on the services 
being modelled. 

A distributed system is often characterized by its stochastic behaviour and time 
constraints within the system. In our case, stochastic automata are used to describe the 
behaviour of each model [1][3]. A stochastic automaton does not differ much from a 
finite automaton. The main difference is that a stochastic automaton has clocks. The 
clock can be set to a value upon the entry of a desired state. After the clock is set, a 
countdown of the clocks begins. The automaton can move from one state to another if 
there is an edge between the states, the input symbol is the same as the symbol 
assigned to the edge, and the set of clocks associated with the edge are all zeros. 
Further, we extend the stochastic automaton to the input/output automaton by 
changing the transition function. The transition function includes input/output events. 
An event will be generated in the system when a transition from one state to another 
is implemented and an output event is assigned to the transition used. We implement 
the countdown process through the scheduler. The event representing the achievement 
of zero in the clock is scheduled. The scheduler notifies the appropriate model by 
invoking the indication primitive. 

Model Controller 
We take into consideration mobile users who can use several services simultaneously, 
e.g., web-browsing and audio streaming. A multi-service server can run several 
services of different types at the same time. From the implementation point of view, 
this means that for each mobile user, there can be several client application models 
running on the client side. Correspondingly, there will be a server model for each 
client application model on the server side. We present a model controller that acts as 
a user on a client node and as a multi-service server on a server node. The model 
controller stores all running models of the user/server. 

Scheduler 
To run a number of users and applications concurrently, some simulators start new 
network models by forking a new process or thread in the operating system. This 
approach causes the following problems. First, the number of processes and threads 
(and thus simulated entities) running simultaneously is limited in the operating 
system. Second, it takes additional effort to implement logical time for every running 
entity and synchronizing them with the whole simulation process. Finally, 
process/thread context switching takes processor time. Thus, considering modelling 
aspects, a more efficient, single process solution is applied in DGM. 

DGM simulates various network entities by running their models through the life 
cycle of the simulation. They behave as independent participants and the events 
produced by models are asynchronous by nature. Every event is marked with a logical 
time-stamp and put to the scheduler. The scheduler implements a logical time line and 
triggers the scheduled events. 

The scheduler is a dual ring buffer consisting of slots that stand for discrete time 
units of the simulation. Every slot consists of a list of events scheduled to the same 
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time unit. The DGM time accuracy is defined by the time slot resolution of the 
scheduler. The default resolution is 1 ms in our generator. The length of the scheduler 
buffer can be extended months ahead to support simulation scenarios using 
user/application models with very low message frequency. We use dual buffers to 
achieve both high resolution and to schedule events very far in the future. Events 
scheduled to trigger within, e.g., the next minute are stored in the buffer with 1ms 
resolution. More distant events are stored in the low resolution buffer until they are 
moved to the high resolution buffer, just before the scheduled time. The models 
progress by processing the list of events in the slot. The logical time corresponds with 
real time accurately, except for occasional short term gaps, mostly in the case of 
process switches. 

System Register 
The system register is a container of model controllers. Its functions include insert, 
delete, and find operations. Because DGM should support a huge number of 
users/servers, the register implementation has to perform the operations in constant 
time. Obviously, the solution is to represent the register as a hash table. We use the 
open addressing hash table, with a double hashing, as a collision resolution method. 
The hash functions are optimised for usage of IP addresses as keys of the hash table. 

Preallocated Buffers 
Considering the performance of the system, sending packets is also critical as an 
efficient implementation of models. However, if we use a standard OS UDP/TCP 
implementation, the preparation of outgoing packets usually involves buffer copying. 
It is one of the bottlenecks of stress generators because it consumes memory 
bandwidth and CPU time. To avoid this problem, we use preconstructed templates for 
outgoing packets. A packet template is a preallocated buffer with already filled-in 
fields of all network protocol headers and payloads that are the same for a set of 
models. Creation and initialization of templates is done only once during the 
simulation. There are various templates that we use in DGM clients and DGM 
servers. Considering headers of Ethernet, IP, UDP, and GTP protocols, which are 
shown in light grey in Figure 4, most of their fields remain unchanged during the 
simulation. For example, source and destination ports of a UDP tunnel header can be 
fixed for the specific template. The processing of arriving packets also can involve 
undesirable buffer copying. Because incoming packets are processed in a sequential 
order of arrival, only one preallocated buffer for incoming packets is needed. 
Actually, instead of receiving the whole packet, it is enough to inspect a few pieces of 
data from each packet. Summing up, the approach that was presented above speeds up 
the process of constructing the packets to be sent and received. 

Raw Socket 
To apply templates of the Ethernet datagrams explained above and to avoid packet 
data copying, we decided to use raw sockets. Such a socket allows us to communicate 
directly with the network driver when sending or receiving a packet; i.e., the usual 
protocol stack-handling, such as IP/TCP or IP/UDP processing, is avoided. In other 
words, the Ethernet frame goes directly from the network card driver to the 
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application and vice versa. In a Linux system, the socket mentioned above is 
presented by a PF_PACKET protocol family starting from post-2.0 kernel releases 
[8]. 

Filter 
Having opened a raw socket, the application starts to receive all Ethernet frames 
arriving to the host. All incoming packets have to be processed, even those that are 
not relevant to the application. The validation of packets destination on the 
application level would cost an extra reception overhead. To avoid this, the elegant 
solution is to use a filtering mechanism right after the network driver to drop the 
packets which do not pass through the filter. Such filters are BSD Packet Filter [11] 
and Linux Packet Filter [7][8]. 

Network Interface Card Driver 
The main goal of a stress workload generator is to be able to saturate the target node 
that is being tested with a heavy network load. The given requirement assumes 
optimization of all components of DGM involved in traffic generation, including the 
network interface card (NIC) driver. The usual way to notify the processor of a 
network event, such as the arrival or transmission of a packet, is done through 
interrupts. This works well on low bandwidth networks, but it degrades results at high 
rate of packet arrivals. Indeed, an interrupt is a too time-consuming operation to be 
called, e.g., 200,000 times/s. The alternative method is known as polling. In contrast 
to using interrupts, in pure polling systems, the device driver “listens” for incoming 
packets and for transmit-completion events. Because several arrival packets or 
transmit completion events can be read over a single poll, the overhead of network 
events handling is reduced. The possible hybrid implementations of NIC device 
drivers combining both interrupt and polling techniques are presented in [4][12]. 

3 Results and Conclusions 

We have presented a framework for implementing a stress workload generator. Our 
primary goal was combining real-like traffic patterns with the high efficiency of a 
generator. 

Modelling Users and Applications 
The similarity between real and generated traffic patterns depends on the accuracy 
with which the models were designed. Perhaps the most popular network model is 
WWW. Let us consider this model as an example demonstrating the advantages of the 
layered approach. 

The behaviour of the WWW model as the composition of the model entities 
depends on parameters that specify the behaviour of each layer. In the network and 
transport layer, the parameters of the model entities such as maximum transmission 
unit and receiving and sending window size are the same as in implementations of the 
corresponding protocols. In the application layer, the WWW model is defined by the 
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average request/response size, the number of embedded objects in a WWW page 
(e.g., pictures, JavaScripts, external CSS), and the number of concurrent connections 
opened to a server. The user behaviour is specified by the average session length, the 
number of pages visited in one session, and reading time. In our case, the application 
and user layers are modelled by one entity. Furthermore, the throughput layer 
artificially limits the speed of connection between the mobile terminal and the 
Internet server. Statistics of real (a) and generated (b) network traffic of a user reading 
the news with the Firefox browser are presented in Figure 5. The application/user 
model parameters were modified according to this special case. The average values of 
the parameters were 30 seconds for reading time, 500B for request size, 10KB for 
reply size, and the number of embedded objects was around 20. Since Firefox uses 
two concurrent connections for retrieving data from a server, the same situation was 
simulated. Because real traffic was measured on a workstation with a fast Ethernet 
connection, the throughput layer parameters were set to values specific for wired 
connection. 

 

Fig. 5. WWW traffic in wired networks- (a) real, (b) generated 

By setting up specific model parameters, predefined model behaviour is expected. 
However, it is typical that the network is utilized by various applications. Multiple 
traffic flows are transmitted through the same network elements. That leads to such 
situations as network congestions and queue overflow. In other words, all network 
participants, consuming limited network resources, affect each other. 

Our DGM implementation has built-in capabilities for simulation of different 
applications, which include WWW, unidirectional UDP and TCP audio streaming, E-
MAIL, and MMS. All these models can be simulated concurrently in the system. The 
concurrent simulation of any combination of models gives a user the possibility to test 
the GSN nodes under lifelike conditions. 

Proceeding with the WWW example, let us consider how web traffic competes 
with other applications for the network resources. We created one thousand WWW 
PDP contexts, and then ran one thousand UDP audio streaming models to produce 
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additional network load. The snapshot of the seven minutes simulation can be seen in 
Figure 6.  

 

Fig. 6. WWW and UDP streaming traffic pattern 

The downlink direction is more interesting to analyse because it is always more 
loaded for both model types. At the beginning only WWW models were created in the 
system. The number of TCP retransmissions was zero at that moment. After about 
100 seconds of the simulation, UDP streaming users started their activity. The 
throughput peak of about 150 Mbps shows clearly this situation. As it can be seen in 
the second graph, after the UDP streaming traffic appeared in the network, the 
number of TCP retransmissions from web servers to mobile clients increased rapidly. 
This is usually caused by congestion or by other problems in the network.  

GPRS/UMTS networks are still evolving. The number of mobile users is 
increasing, their behaviour is changing, and new mobile applications are becoming 
available on mobile devices. In order to make proper tests, a real network has to be 
monitored and the parameters must be set according to actual conditions. Some 
studies on how to rapidly parameterise models have already been made [10]. 
Moreover, some assumptions about the evolution of the network and future 
requirements on the network should be taken in account. 

The DGM performance tests were made with two PCs, each hosting one data node 
process. Both server stations had the same hardware configuration: Intel Xeon 
2.40GHz, 512MB RAM, PCI-X (64 bits/100 Mhz), Intel 82544EI Ethernet controller. 
The current version of the DGM was able to produce about 500 Mbps with 90 000 
packets per second in this configuration. Verification tests of DGM with real network 
elements were also conducted. 

Future Work 
We will consider the extension of the system with new models such as Voice over IP 
applications, which will also require a new model entity for Real-Time Transport 
Protocol (RTP). Although new models can be easily added to the layered hierarchy, 
there is a small drawback, which is related to the integration of new models, to the 
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current system. The implemented models are completely built into the system and the 
addition of new models requires small changes inside the core of the system. 

The DGC and DGS are implemented as one-thread applications. Properly threaded 
applications can benefit hyper-threading and dual-core technologies by increasing 
their operational speed. Hence, the next step for improving the performance of the 
DGM would be to implement the data nodes with a few threads to utilize multi-
threaded, multi-core, and multi-processor systems. In order to change the structure of 
the data nodes, the relation between the events within the system has to be found and 
the sets of independent events identified. The disjointed sets can be processed in 
parallel by using threads. 
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