replic8: Location-aware data replication
for high availability in ubiquitous environments

Evangelos Kotsovinos and Douglas Mcllwraith

University of Cambridge Computer Laboratory
evangelos.kotsovinos@cl.cam.ac.uk

Abstract. File replication for uninterrupted availability is affected by
the localised nature of network failures, particularly in ubiquitous, mobile
environments; nearby nodes often get disconnected together, as a result
of switching equipment faults, or of local wireless network unavailability
— for instance, failure of a base station, or loss of network connectivity
when a train enters a tunnel.

In this paper we propose replic8, a substrate for location-aware file
replication, mitigating the effect of localised network failures by storing
replicas at network locations selected for being far away. We demon-
strate that, compared to storage of replicas at random network loca-
tions, replic8 achieves high data availability, and requires lower numbers
of replicas to maintain that.

1 Introduction

Mobile and ubiquitous computing proposals envisage a world in which hetero-
geneous devices are interconnected to share data with ease and reliability. Con-
nectivity of mobile devices such as mobile phones, PDAs and laptop computers
is a commodity, due to the nature of the medium which is used.

The transience of such devices raises important research challenges in sup-
porting uninterrupted presence of resources. Mobile devices often encounter net-
work unavailability; this can be due to location, as when a user is passing through
a valley where reception of her mobile phone network is weak, or when a train
is going through a tunnel. It can also be due to failures of network software or
hardware, such as network switches and transparent proxies, or base stations —
for instance, as a result of poor weather conditions. File replication has been
used for several years to provide significant benefits in terms of uninterrupted
availability of files [1]. More recently its importance for mobile and ubiquitous
environments has been realised [2].

In mobile networks we observe that such failures are usually localised; if a
mobile phone cannot receive signal at a particular location it is highly unlikely
that another one at the same location — connected to the same network — will, and
if a PDA is not able to connect to a hotel lounge’s wireless LAN it is improbable
that other PDAs and laptops in the same lounge can. The probability of a mobile
device being available, given that a second mobile device is unavailable, is higher
if the two devices are a certain distance apart.

To address the localised nature of network failures, we propose replic8, a
system for enhancing file availability in such environments. We use a location-
based metric for determining which servers are “suitable” for hosting the replicas,
based on the probability that they will fail together. Then, we replicate the file
on nodes where that probability is low. In this paper we use physical distance
between nodes as the aforementioned metric, there is no architectural restriction,
however, to prevent other metrics from being used.

This paper presents the design and implementation of our system, and initial
evaluation results obtained in an internal deployment. We present the system
architecture, focusing on the components of the distributed architecture and
the operations supported, in Section 2. The prototype deployment and evalua-
tion setup is described in Section 3, along with our initial experimental results.
Section 4 positions our system among related research work. Finally, Section 5
concludes and outlines our future plans for the deployment of our system in a
mobile environment.

2 System Architecture

Servers participating in the replic8 substrate are termed nodes. Various types
store replicas and run management software for communication with other nodes
and distributed components. Users contact nodes for adding or retrieving files.

The node at which a data item is added to the system is called the owner
node for that item, and the node that a user contacts for retrieving a file is called
the client node. The owner node determines which nodes are suitable for hosting
the replicas — based on their location — and passes replicas to other nodes. The
nodes that store replicas of a data item are termed the replica nodes for that
item. The set of nodes including both the owner node and replica node(s) for a
given data item shall be known as the data nodes for that item.

A number of research challenges need to be addressed: as users need to be
able to add, remove, modify, and retrieve files by contacting any of the replic8
nodes, all nodes need access to information about the availability and position
of other nodes, as every time a file is inserted location-based decisions need to
be made on where its replicas are to be stored. At the same time, nodes need to
be able to obtain information about the location of replicas, to allow discovery
of data items. Consistency management issues are also raised, as concurrent
modifications of the same data item may be attempted from different nodes.

2.1 Overview

To distribute node position and replica location information we employ spe-
cial groups of nodes — each one comprising nodes selected to be far from each
other, for higher fault-tolerance; then we run each of the required services on
a group of nodes in a replicated fashion. This is not dissimilar to super-peer
nodes [3] on peer-to-peer networks, but where designers of such networks may
strive to assign super-peer ’status’ to nodes most capable of handling the load,

replic8 seeks nodes which are least the likely to fail together. We use three such
groups of nodes:

— Directory service nodes participate in file discovery by storing and pro-
viding information about the files that exist in the system.

— Group service nodes identify data nodes for each data item in the system
and keep track of the location of replicas for each file.

— Position service nodes store position information about the nodes in the
system and assess the suitability of nodes to hold particular replicas.

Updates sent to any of a group of service nodes are immediately multicast to
other members of the group. This ensures that all members of the group maintain
the same information. If acknowledgement is received from all members then the
update is complete, else the original recipient of the update enters a phase of
continual transmission to the unavailable node, until acknowledgement. This
ensures the missing node receives the update soon after it becomes available
again. Specific group node operations are discussed in Section 2.2.

In our prototype implementation service nodes are selected randomly — as
long as they are further apart than a specified minimum distance, in a future
implementation, however, we envisage using a distributed election algorithm
appropriate for mobile and ubiquitous environments [4, 5].

Service nodes inform others of the same group when they are disconnecting.
Each node also periodically multicasts a heartbeat message, to make sure others
can find out if it disappears abnormally, without prior notification.

Since initial results are obtained in a trusted environment, we ignore the
possibility of malicious intent. This will need to be re-addressed as we deploy
on more large scale distributed networks, perhaps using our experience on trust
and reputation management systems [6] and honesty detection mechanisms [7].

2.2 Operations

In this section we describe the internal actions that are taken every time a user
calls one of replic8’s interfaces to add, retrieve, modify, or remove a file. We also
discuss two operations that take place periodically in the background, namely
replica relocation and consistency management.

File Addition Users contact any replic8 node, which becomes the owner node
for the file to be added. Additions to the system require generation of a file
identifier, and replication on suitably remote nodes. The former is carried out
with the help of the directory service, which generates a unique file ID, stores
its mapping to the file’s name, and returns the ID to the user — operation 2 in
Figure 1. The latter is completed by communication with the position service,
which recommends a list of servers according to physical proximity — operation
3. Nodes periodically submit advertisements to the position service specifying
their current status and location — operation 1.

2) generate ID
6) acquire ID

Il Directory service
nodes
10) remove entry
I Position service|_3) locate suitable
nodes replica nodes
I Group service
nodes

1) advertise

location

Client/Owner
node

4) create group
7) get data nodes

5) replicate file
8) get file

9) lock file

11) delete replica

Fig. 1. Overview of the replic8 architecture.

The owner node decides, based on the position service’s recommendations,
on the set of replica nodes to be used and replicates the file there — operation 5.
Successful completion triggers communication with the group service to commit
the relationship between the file and its data nodes — operation 4.

If a proposed replica node is unable to receive the replica then the owner
node enters a state of retransmit, trying to contact the unavailable node until
it responds. If after a period of time no response is received the owner node
attempts to find another suitable set of replica nodes. If there is no other suitable
set of replica nodes then the data is replicated on the available nodes only and
inconsistency is resolved at a later stage.

File Discovery and Retrieval Users request the retrieval of a file providing
its human-readable filename. The client node first acquires the unique file ID for
the requested file from the directory service — operation 6. On receipt of the 1D,
the client node contacts the group service to request the data nodes for this file
— operation 7, then tries to retrieve the file from each one of the data nodes until
the owner node or the first available replica node returns the file — operation 8.

File Modification Firstly, the client node that has been contacted retrieves
the identifier for the file to be modified, which is carried out by communication
with the directory service — operation 6. Then, support from the group service
is required to provide the list of data nodes for the file — operation 7.

The client node then contacts all data nodes that store copies of the file. If all
data nodes are available, the client requests an exclusive write lock on the given
file on all those nodes — operation 9. If only a subset of the data nodes for that
file can be contacted, updates go ahead as above, but only at the nodes contained
in the subset. Resolution of the arising inconsistency is described below.

To prevent deadlock we use soft-state file locks; each lock is associated with an
expiration time and cannot be retained by a node indefinitely. Once confirmed by
all involved, updated copies are written to the data nodes and the locks released.

File Removal Removing a file from the system involves initially deleting the
entry for the file in the directory service, which is carried out by the client node
in communication with the directory service — operation 10. This ensures that
any further searches for the file will not return any results.

Any replicas of the file stored in remote nodes then have to be deleted by
submitting replica deletion requests — operation 11. We follow a “lazy” approach
towards replica removal; nodes that receive such requests mark files as “to be
deleted” but do not actively delete them unless the allocated space for storing
replicas is filling up. This allows for file recovery and better file removal perfor-
mance, without compromising consistency.

Replica relocation management Nodes advise the position service about
changes in their position regularly — operation 1. As we are focusing on ubig-
uitous and mobile environments, it is necessary that our architecture is able to
adapt to change of location and availability of mobile nodes. When a replica
node gets closer to the owner node, replic8 needs to locate another, more suit-
able replica node, copy the file there, and remove the now nearby, old replica
node from the data nodes group for the file.

This is carried out periodically by the owner node for the file, which requests
recommendations from position service and determines whether there is a sig-
nificantly better set of replica nodes that may be used. The period at which this
operation is undertaken, as well as the threshold above which a change of replica
nodes for a file is required, present two important trade-offs; higher frequency
of this operation and low restructuring threshold lead to higher data availability
— as the replica nodes are most of the time suitable — but incur higher network
traffic and computational load for the replic8 nodes.

Consistency management As we are employing an optimistic replication
scheme, it is necessary that replic8 performs internal management operations
periodically to ensure consistency of replicas. Detection and resolution of incon-
sistencies for a file is ultimately a responsibility of the owner node for the file,
and is achieved using Version Vectors [8]. Version Vectors are well understood
and it is known that they cannot resolve consistency when copies of a file of
the same version have been modified in isolation from the others. Any attempt
at resolution will result in one or more modifications to the file being lost. If
this situation occurs in replic8 manual intervention is required, and we provide
methods to signal this to the file owner affected.

3 Evaluation

In this section, we present our initial results in assessing replic8’s performance in
terms of achieving higher data availability than a random replication strategy,
where files are copied to arbitrary nodes, in an environment where localised
failure is common. All experiments were carried out on an Intel Pentium III

Mobile CPU, clocked at 866MHz, with 128Mb of main memory. Java 1.4.1-02
was used on a Windows 2000 platform.

To measure replic8’s effectiveness, we launched a system comprising a thou-
sand replic8 nodes, and associated a random position in a 2D Cartesian coordi-
nate space with each. The 20x20-sized coordinate space used was split in four
hundred 1x1-sized sub-spaces called quadrants, each contains the nodes whose
position coordinates fall inside that quadrant. In our experiments we do not
consider varying network conditions, such as route changes or packet loss.

We also present results indicitave of replic8’s network overhead for file main-
tainance compared to that of a system which is not location aware. Both systems
implement functionality to maintain file consistency, enable file addition and file
retrieval, but unlike replic8, the system incapable of location aware operation
did not implement services to respond to file movement by relocating replicas.

The simulation started with file addition, where files were inserted in the
system and replicated accordingly. After that, the simulation entered an iteration
comprising failure generation, measurement of the number of unavailable files in
the system, and node relocation, as explained below.

File addition. Suitable replica nodes for the files inserted were discovered, and
the files were replicated on these nodes. File addition only happened once, and
the files remained in the system throughout its operation after that point. All
quadrants were initially set to active.

We added a thousand files, or one on each replic8 node. The minimum dis-
tance that replicas should be held at, based on which the position service rec-
ommends suitable replica holders to the owner nodes at file addition, had been
set to seven.

Failure generation. The first step of the simulation iteration involved inject-
ing localised network failures. We did so by making neighbouring quadrants fail
together according to a simple localised failure generation algorithm, and com-
pared the number of available files in the system using random replication to
that achieved using replic8. A file is considered awvailable if it can be found on at
least one currently connected replic8 node.

The failure generation algorithm we used works as follows; each time the fail-
ure generation algorithm is called, a single quadrant is picked randomly from the
coordinate space and set as disabled. This ensures that all nodes it contains are
immediately marked as disconnected. At the same time, neighbouring quadrants
may be disabled too, making up a disconnected area of a radius equal to the
localisation coefficient. In our experiments, the coefficient has been varied from
one to twenty.

Node relocation. Nodes move around the coordinate space in random direc-
tions by a fixed walk distance and register and unregister with quadrants ac-
cordingly. In the tests we carried out, to simulate a highly mobile environment
nodes moved around by a unit — ensuring most change quadrant every iteration.

Number of files available
©
N
S
T

860 |- random, 1 replica —+—
replic8, 1 replica ------

random, 2 replicas ---%---
replics, 2 replicas &

L L L L L L
0 2 4 6 8 10 12 14 16 18 20
Localisation coefficient

Fig. 2. File availability as the size of a disconnected area grows.

After each relocation step, each owner node ensures that all nodes previously
used as replica holders for its file have not got prohibitively close, then a new
failure generation step is invoked. This cycle is continued until a number of
iterations is reached.

3.1 Results

File Availability In the aforementioned setting, we have executed the simula-
tion iteration twenty times for each combination of values for number of replicas
and localisation coefficient. We have calculated the average number of available
files out of the one thousand files initially added to the system as the size of the
disconnected area increases. Figure 2 compares the availability achieved using
replic8 to that using a scheme where replica nodes were selected at random.

We have plotted, along the x-axis, the localisation coefficient, representing the
maximum size of the disconnected area around a randomly selected quadrant.
The y-axis displays the availability of files — the number of files accessible through
at least one of their data nodes. Availability has been measured in two cases; in
the first case, only one replica of each file was being held — so two copies of the
file existed in the system, including the original one. In the second case, each file
was copied twice on replica nodes.

The graph shows that using replic8, for localisation coefficient 15, only 32 files
are unavailable, compared to 88 using random replication. Even by maintaining
an extra copy of the file, random replication does not surpass replic8, leading
to 52 files being unavailable; replic8 achieves availability of all files but 22 using
two replicas per file. In general, replic8 using one replica performs almost as well
as random replication using two replicas — in some cases even better. This is an
important result given that storage space can be restricted on mobile devices.

The graph shows that file availability decreases as the size of the disconnected
area grows for both file replication schemes — replic8 and random replication.

4000 T T T T
Replic8 —+—
3500 Non location-aware replication scheme -—>x*-- -
o -
S 3000 | T
] "// -
g 2500 %"
< =
2000 f 4
3 T
x 1500 | i
E =
2 1000 [i
2 =
500 .~ L
0 L L L L L
0 20 40 60 80 100 120

Number of Nodes

Fig. 3. Network overhead as the number of nodes increase.

This is inevitable, as increasing the size of the disconnected area causes more
nodes to be disconnected. Furthermore, the frequently changing direction of
the plot is due to the randomness present in the simulation; since nodes move
arbitrarily and failure is random, convergence to an average availability for a
given localisation factor is not guaranteed. We believe it is exaggerated by the
comparatively large size of the quadrants to the entire area.

Overall, replic8 provides significant file availability benefits in environments
where node disconnection is highly localised, such as — potentially — in ubiqui-
tous, mobile, and wireless networks.

Network Overhead Figure 3 compares average network overhead with replic8,
and with a non location-aware replication scheme which does not respond to the
movement of nodes. The overhead illustrated is due to file maintainance when
the system is populated with a varying number of nodes. Each node owns a 500K
file and is responsible for its consistency with replicas as well as, in replic8’s case,
file movement between nodes when node positions become unsuitable.

Both plots exhibit linear behaviour as the number of nodes increase. This is
due to increased load on the network from consistency checking and, in replic8,
movement of files. These trends are linear since both aforementioned operations
occur with a fixed period.

The regularity of node failure also effects this load as, upon service failure,
service nodes enter a state of permanent retransmit until all members of a ser-
vice group are available. Node failure frequency affects data holders for a file
also, since the more often data holders for a file are unavailable, the more likely
updates will occur optimisitically, at a subset of the data nodes, requiring ex-
pensive additional clean-up operations to regain consistency. These figures were
based on individual nodes failing with an average probability of 0.001.

With replic8, network overhead grows more rapidly as the number of nodes
increase. This is due to additional overhead in maintaining an extra service,
namely regular publication of position from nodes, plus the load exhibited from

file relocation as nodes move around the system. For 120 nodes we calculate an
increased network overhead of around 11%

While Figure 3 demonstrates load for file maintainance, it does not illustrate
the cost of individual operations. We calculate that replic8 creates a load of
1099KDb on the network introducing a single 500K file to the system, in compar-
ison to a load of 1008Kb for a non-location-aware system — an increased load of
around 9%. File removal and retrieval in replic8 costs the same whether or not
the solution is location aware.

Replic8 provides, with minor network overhead, significant availability im-
provements over random replication — allowing the use of fewer replicas. This lets
us trade storage overhead for a small network overhead in environments where
storage is a commodity.

4 Research Context

Distributed storage systems have used replication to improve data availability
in unreliable network conditions. Ficus [9] adopts optimistic replication and pe-
riodic consistency checks — like replic8 — for reliable access to files on transient
devices, and delegates the decision as to how many file replicas are to exist
and where, to the clients. Bayou [10] targets heterogeneous environments and
provides high availability via a read-any/write-any scheme of data access. A dif-
ferent approach for data replication, based on an economic model for managing
the allocation of storage and queries to servers, is employed in Mariposa [11].

All above systems have presented important solutions to problems such as dis-
connected operation, replica discovery, and conflict resolution. Our work specif-
ically targets the issue of improving file availability in localised network failure
conditions. replic8 addresses the problem by basing the decisions on where repli-
cas are to be stored on location, or other application-specific metrics.

Fluid Replication [12] employs location-based replication in static environ-
ments, ensuring that replicas are stored near the original for reduced latency.
Replic8 differs by targeting environments where localised replication would be
disastrous; a single failure may either bring down an entire mobile service cluster
or a client and its local replicas.

Replic8’s service nodes are inspired by super-peer nodes found in peer to peer
systems [3]. The simple replication strategy followed is sufficient to validate our
approach, as shown by the evaluation results, and avoids requiring the storage
and processing of excessive amounts of data on mobile devices.

5 Conclusions and future work

In this paper we have presented replic8, a system for intelligent file replication to
achieve high data availability in environments where device disconnections are
non-arbitrary. We have shown replic8 to operate more effectively than random
replication in an environment simulating highly localised failures of a mobile

network — while requiring fewer replicas. We have also demonstrated that this
can be achieved with small network overhead above a non-location-aware system.

We plan to deploy replic8 on our COMS! and XenoServers [13] and obtain

more accurate results and experience on the performance and fault-tolerance of
our system. Furthermore, we plan to augment distributed storage systems such
as CODA [14] with replic8 to achieve higher file availability with fewer replicas
under conditions of non-arbitrary node disconnection.

References

1.

10.

11.

12.

13.

14.

Walker, B., Popek, G., English, R., Kline, C., Thiel, G.: The LOCUS Distributed
Operating System. In: Proc. of the 9th ACM Symposium on Operating Systems
Principles. (1983)

Ratner, D., Reiher, P., Popek, G.J., Kuenning, G.H.: Replication Requirements in
Mobile Environments. Mobile Network Applications 6 (2001) 525-533

Yang, B., Garcia-Molina, H.: Designing a Super-Peer Network. In: Proc. of the
19th Intl. Conf. on Data Engineering. (2003)

Malpani, N., Welch, J.L., Vaidya, N.: Leader Election Algorithms for Mobile Ad
Hoc Networks. In: Proc. of the 4th Intl. Workshop on Discrete Algorithms and
Methods for Mobile Computing and Communications. (2000)

Vasudevan, S., DeCleene, B., Immerman, N., Kurose, J., Towsley, D.: Leader
Election Algorithms for Wireless Ad Hoc Networks. In: Proc. of the 3rd DARPA
Inf. Survivability Conf. and Exposition (DISCEX- III). (2003)

Dragovic, B., Hand, S., Harris, T., Kotsovinos, E., Twigg, A.: Managing Trust and
Reputation in the XenoServer Open Platform. In: Proc. of the 1st International
Conference on Trust Management (iTrust 2003). (2003)

Fernandes, A., Kotsovinos, E., Ostring, S., Dragovic, B.: Pinocchio: Incentives
for Honest Participation in Distributed Trust Management. In: Proc. of the 2nd
International Conference on Trust Management (iTrust 2004). (2004)

Parker Jr., D., Popek, G., Rudisin, G., Stoughton, A., Walker, B., Walton, E.,
Chow, J., Edwards, D., Kiser, S., Kline, C.: Detection of Mutual Inconsistency in
Distributed Systems. IEEE Transactions on Software Engineering SE-9, (1983)
Guy, R.G., Heidemann, J.S., Page, Jr., T.W.: The Ficus Replicated File System.
SIGOPS Oper. Syst. Rev. 26 (1992) 26

Terry, D.B., Theimer, M.M., Petersen, K., Demers, A.J., Spreitzer, M.J., Hauser,
C.: Managing Update Conflicts in Bayou, a Weakly Connected Replicated Storage
System. In: Proc. of the 15th Symp. on Oper. Sys. Principles (SOSP-15). (1995)
Sidell, J., Aoki, P.M., Sah, A., Staelin, C., Stonebraker, M., Yu, A.: Data replication
in mariposa. In: Proc. of the 12th International Conference on Data Engineering,
IEEE Computer Society (1996) 485-494

Noble, B., Fleis, B., Kim, M., Zajkowski, J.: Fluid replication. In: Proc. of Netstore
’99, the Network Storage Symposium. (1999)

Hand, S., Harris, T.L., Kotsovinos, E., Pratt, I.: Controlling the XenoServer Open
Platform. In: Proc. of the 6th International Conference on Open Architectures and
Network Programming (OPENARCH). (2003)

Kistler, J.J., Satyanarayanan, M.: Disconnected operation in the coda file system.
In: Proc. of the 13th ACM Symp. on Oper. Sys. Principles (SOSP-13). Volume 25.,
Asilomar Conference Center, Pacific Grove, U.S., ACM Press (1991) 213-225

! Cambridge Open Mobile System, http://www.cl.cam.ac.uk/coms/

