<u>SplitPad: Securing Communication with</u> <u>Active Networking</u>

- A particular application scenario.
- 100% bullet-proof communication (perfect privacy).

<u>One-time Pads</u>

- □ The only know encryption that is proven to be unbreakable.
- □ Encoding algorithm for N bits: $\overline{m_i}$; i = 1...N; $m_i \in \{0, 1\}$.
 - Be $\overline{r_i}$ a sequence of (equally distributed) random bits.
 - Calculate the ciphertext $\overline{c_i}$: $c_i = r_i \otimes m_i$ (bitwise xor).
 - Keep $\overline{r_i}$ secret.
- **Decoding:** Calculate $\overline{d_i}: d_i = r_i \otimes c_i = r_i \otimes r_i \otimes m_i = m_i$.
- **Destroy** $\overline{r_i}$.
 - \sim One-time pad: $\overline{r_i}$ can be used only once for decoding.
 - Application: secret sharing, in weakened form: OFB mode.

Security of the One-time Pad

- □ It is impossible for the cryptanalyst having only ciphertext $\overline{c_i}$ to calculate the message $\overline{m_i}$.
 - For each cipherbit c_i , the probability that the original was a 0 (resp.1) is exactly 0.5.
 - For a given c_i , every possible $\overline{m'_i}$ has exactly the same probability 2^{-N} .
- \Box "The key $\overline{r_i}$ is as long as the message itself, and chosen carefully."

The Problem with the One-time Pad

- □ Where to get that much 'good' random?
 - Mechanical random e.g. lottery machines, dices.
 - Physical random e.g. radioactive decay.
 - Human behaviour e.g. keyboard interrupt times.
 - Multiprocessing & *networking devices*:
- (ps -el & netstat -na & netstat -s & ls -lLRt /dev & w) | md5
- \Box How to bring $\overline{r_i}$ to the receiver?
 - Use an independent communication infrastructure:
 - Postal service, Telephone, messenger.
 - <u>Use independent network paths</u>:
 - Different ISP, different physical links, paths through different countries.

Active Networking: enabling SplitPad

- □ The capsules implement SplitPad.
- Dynamic setup of independent paths.
- Dynamic setup of the 'split-point' (resp. merge-point).
- Dynamic deployment of necessary transport layer protocol.
- Dynamic deployment of random generating code.
 - Make use of e.g. packet latency and the state of the network node.

Particular Problems

- □ Setup the paths.
 - Pathfinder capsules.
- Delays & loss of split capsules.
 - Split-capsule has code to wait for its twin at the merge node.
- Generation of 'sufficient' random.
 - The delay variation provides only few random bits (limited clock resolution).
 - Bootstrapping with empty capsules.
 - Use a secure random number generator.
 - The generator should only work with a large seed (>128 bits).

<u>Conclusions</u>

- □ Active networking allows the dynamic deployment of the SplitPad scheme.
 - Application of the well-known one-time pad.
 - High level of data communication privacy for specific application areas.
 - Computational light weighted especially on the receiver side.
- □ Implementation with the Active Node Transfer System (ANTS) of the MIT.
- Demo setting:

