
Documentation of the Customer-based Service Monitoring (CSM)
Tool

Manuel Günter
Institute of Computer Science and Applied Mathematics

Neubrückstrasse 10, CH-3012 Bern, Switzerland
http://www.iam.unibe.ch/ ˜ mguenter

Abstract

This document is a guideline for users of the CSM implementation [Gün01]. It shall help them to
install and run the involved programs.

Contents

1 Overview 1
1.1 Organization of the Java Source Code. 2

2 Installation 3
2.1 Software Prerequisites. 3
2.2 Step-by-step Installation. 4

2.2.1 The Provider Side (Server). 4
2.2.2 The Customer Side (Client). 4

3 Configuration 5
3.1 Configuration Files. 5

3.1.1 The Node Configuration File. 5
3.1.2 The Node Lookup File. 6
3.1.3 The Neighbor Lookup File. 6
3.1.4 The User Database. 6

3.2 In-Code Configuration. 7

4 Agents 7

5 Use Cases 11
5.1 Preparation .11
5.2 Demo I: One Node, One Agent. 11
5.3 Demo II: Security. .12
5.4 Demo III: Distribution, Forwarding and Callbacks. 13

6 Live/Real Monitoring 14
6.1 The Tcpdump T-Component. 14
6.2 Sniffing on Virtual Routers. 15

1 Overview

The CSM implementation is divided into three distinct programs that communicate over TCP sockets as
depicted in figure1.

• Thehome applicationallows the customer to send agents into the network. The program provides a
graphical user interface that can also display the measurement and monitoring results that the agents
send back. The application can also store these results on non-volatile media for analysis with other
tools.

1

http://www.iam.unibe.ch/~mguenter/
http://www.iam.unibe.ch/~mguenter

• TheCSM nodeexecutes the customers’ agents ensuring that no policy is violated. The program is
run by the providers. The CSM node is the most complex part of the CSM implementation. It is
connected to one or several border routers and aware of the neighbor providers’ peer nodes. This is
necessary for agent forwarding.

• TheT-component. The CSM node gets the monitored UP packets form the T-component. The node
tells the T-component what traffic its agents want to monitor and then gets matching IP packets
encapsulated in a TCP connection.

Home Application Client

GUI

Server

Server

Client

TCP dataflow

TCP socket

Program

Agent

in Java

in Java

C
SM

 P
ro

to
co

l (
tc

p)

R
aw

 P
ac

ke
t P

ro
to

co
l

(tcp)

T-Component
in C++

ClientCSM node
forwarding
Agent

Figure 1: Implementation overview.

The CSM node and the home application are implemented in Java [Sun] (version 1.1.8). Then there are
several kind of T-components: a Java dummy program, a script that starts Tcpdump [JLM89] and a C++
program, as well as a C++ program for virtual routers [BB00].

1.1 Organization of the Java Source Code

The CSM Java source code is grouped into packages. This provides more modularity, safety and managa-
bility to the implementation. The CSM implementation foresees two installations: one for the customer
(the home application and individual agents) and the other for the provider (the nodes). Both installations
have packages that are uniquely used by them, some that they both share, and some that are only stubs.
The stub packages are necessary if one installation must know some basic classes of that package but not
all of them. The best example is thecapsule package that bundles the agents. For the node installation
it suffices to know thecapsule.Agent class. The individual agent class and its helper classes are dy-
namically downloaded by the CSM protocol when the customer sends the agents. Here is a complete list
of the packages and their purpose:

• application. This package hosts stand alone Java applications that can be used in conjunction
with CSM agents. An example application is a traffic generator.

• capsule. All CSM agents are implemented in this package.

2

• clientserver. The CSM protocol classes and helpers are implemented here.

• config. This package groups the classes that help the node or other applications read and parse
configuration information from files.

• filter. All classes related to filtering are implemented in this package.

• homeApplication. The classes that implement the home application are bundled into this pack-
age.

• netgui. This package hosts the classes that help to display a network topology and callback agent
results.

• node. This package bundles most of the classes relevant for the node implementation.

• topology. Here are the classes that implement the node routing.

• utils. This package contains helper classes that are also useful in other contexts such as e.g. the
PGPEncoder class that provides access to PGP encryption and authentication.

Table1 shows how the installations use the packages:

Table 1: The use of the packages by the two installation variants.

Package Provider installation Customer installation
application stand-alone not used
capsule stub used
clientserver shared shared
config exclusively used not used
filter shared shared
homeApplication not used exclusively used
netgui not used exclusively used
node used stub
topology used stub
utils shared shared

2 Installation

2.1 Software Prerequisites

• Java version 1.1.8.

• PGP 2.6.3i if encryption or authentication of agents is needed.

• A C++ compiler if the real T-component is needed.

• Shell script support (pipes and filters) if the real T-component is needed.

• The Tcpdump program, if the real T-component is needed.

• The virtual routers if they are needed.

3

2.2 Step-by-step Installation

2.2.1 The Provider Side (Server)

The Java Stuff.

1. Make sure you use Java 1.1.8. E.g.module load java1 .

2. Go to or create a directory (e.g./my/server/comes/here/) where you would like to install
the CSM node.

3. Decompress the fileprovider.tgz with tar xvfz provider.tgz .

4. Change the Java classpath to this directory. This operation depends on the operating system and shell
you are using. E.g.setenv CLASSPATH /my/server/comes/here/ \:$CLASSPATH .

5. You can start the CSM node now by calling:java node.Node . The output will probably com-
plain about some fields in the default config file. It will also start a server for routing and later a
server for the agents.

6. You can test if the server is running using telnet to the default ports 1997 and 1998. After sending a
line the server will issue error messages, but it will not crash.

The T-component. The T-component is located at the provider site, but not necessarily in the same
machine as the CSM node. If the T-component is a dummy then the Java installation will do fine. If the
T-component is in a virtual router then you need to install virtual routers with so called t-bones. If the T-
component is Tcpdump-based, then the CSM node interacts with C++ programs provided in the tar archive
t-component.tgz . Unpack this archive in/my/server/comes/here/ CPP/. For more details
see section6.

2.2.2 The Customer Side (Client)

1. Make sure you use Java 1.1.8. E.g.module load java1 .

2. Go to or create a directory (e.g./my/client/comes/here/) where you would like to install
the CSM home application. DoNOTuse the same path as for the CSM node as this would overwrite
some classes that differ.

3. Decompress the filecustomer.tgz with tar xvfz customer.tgz .

4. Change the Java classpath to this path. This operation depends on the operating system and shell you
are using. E.g.setenv CLASSPATH /my/client/comes/here/ \:$CLASSPATH .

5. You now need to create a subdirectory calledtopology . This should be consistent with the topol-
ogy directory in the provider installation. So either copy the contents of that directory or if possible,
create a symbolic link to it:
ln -s /my/server/comes/here/topology /my/client/comes/here/topology .
The files in the topology subdirectory determine how your CSM nodes form an overlay network.

6. You can start the CSM home application now by calling:java homeApplication.SDC . (Note,
that SDC is a ’historical’ name and is synonymous to CSM). A little window will pop up that allows
you to send queries or agents to CSM nodes.

4

3 Configuration

3.1 Configuration Files

3.1.1 The Node Configuration File

The CSM node is started withjava node.Node configfilename . Usually, the node configuration
files are located in theconfig subdirectory. The each line of a node configuration file contains one
attribute-value pair. The pair is separated by semicolons. Note, that empty lines and line entries after a
second semicolon are ignored. Here’s an explanation of the attributes:

Attribute Meaning
NODE_ID Identifies the node. This is used in other configuration files and

also by PGP. As a convention I use PGP-style E-mail addresses.
PASSPHRASE The PGP passphrase to access the keys belonging to the node ID.
NODE_LOOKUP_TABLE The full name of the file that holds the naming information. This

table maps node IDs to IP and port numbers.
NEIGHBOR_LOOKUP_TABLE The full name of the file that holds the topology information (for

each node the table says what neighbor nodes there are). Note,
that the last both tables are usually located in thetopology
subdirectory.

PGP_TMP_PATH A place where PGP can create and remove temporary files.
SCRIPT_PATH The path where the scripts for PGP and for the T-component are

located.
TEST_FILE_NAME The full name of a test file containing Tcpdump output. If this

name is provided, then the node starts a T-component that reads
from this file.

T_IS_VIRTUAL If set to true , then the node assumes the presence of virtual
routers.

T_NAME This is the DNS name of the machine executing the T-
component. If it is not set, then the T-component is local. Note,
that if also no testfile is provided andT_IS_VIRTUAL is false,
then the node starts a dummy T-component.

T_DUMMY_INTERVAL The dummy T-component sends a packet every time after that
much milliseconds.

MAX_AGENTS That many agents may execute concurrently in this node.
T_SERVER_PORT The C++ based T-components contact the node on this port up

to this port plus MAX_AGENTS.
Q_LEN The length of the packet queue that feeds the agent.
CRITICAL_Q_LEN If the queue is filled to more than this value, then the emergency

packet handling method is called.
ENABLE_RESSOURCE_CONTROLIf this is set to true, resource control (CPU and memory) is acti-

vated.
CONTROL_INTERVAL The frequency of resource usage controls (ms).
INTOLERABLE_LOSS If that many percent (between 0 an 1) packets are handled as

emergency, then the node is considered congested.
MIN_SIGNIFICANT_EXEC_LEN Do not consider agents that execute only for a short (ms) total

time within an interval.
MAX_TIME_2_NORMAL After a node congestion, wait that long (control intervals) before

going back to normal operation.

5

Attribute Meaning
MAX_MEM The maximum number of bytes that an agent is allowed to use.
MAX_EXEC_TIME The maximum total time (ms) that an agent may use the CPU.
TIME_TO_LIVE The maximum time (secs) that an agent may reside in the node.
MAX_BURST_LEN The maximum time (ms) per packet that an agent may cling to

the CPU.
CONFIG_PATH The location of the configuration files and the user database.
USER_DB_FILENAME The filename of the user database.
USER_DB_AS_OBJECT The database can be represented as text or as a Java object.
USER_DB_OBJ_EXT The file extensions depending on the file type.
USER_DB_TXT_EXT
MAX_USES_PER_SERVICE If the service usage is not restricted otherwise, this is the maxi-

mum number of usages.

3.1.2 The Node Lookup File

The node lookup file is usually located in thetopology subdirectory. As said before, the node config-
uration file provides the name and location of this file. The file structure is as follows (see alsotopol-
ogy/nodes.global.config as an example): There is one line per node. Lines are separated in
entries by colons (’:’). The first entry gives the node ID. The second entry the DNS name of the machine
hosting the node. The third entry (alternatively) provides the IP address. The forth entry gives the port that
the node shall open for agent transmission. The fifth entry is the port that the node shall open for routing
information. The sixth entry associates the node with an ISP organisation (a domain). Finally, there is
a flag indicating if the ID really belongs to a CSM node (false) or if it is merely a customer (true).
Customers may also be associated with and IP or DNS entry but they don’t need the port numbers.

3.1.3 The Neighbor Lookup File

The neighbor lookup file is usually located in thetopology subdirectory. As said before, the node
configuration file provides the name and location of this file. The file structure is as follows (see also
topology/neighbor.global.config - compare with figure2): There is one line per node. Lines
are separated in entries by colons (’:’). The first entry gives the node ID. Further, entries give the IDs of
nodes that are adjacent to this node (neighbors). Customers attached to a node are also in this list.

3.1.4 The User Database

The user database helps the node to classify users. It is usually located in theconfig subdirectory (see
e.g.userDB.txt). There is one line per user. Lines are separated in entries by colons (’:’). The first entry
gives the user ID (as used in the node lookup file and by PGP). The second entry declares what the home
networks of that user are. Currently, there may be any number of space separated subnet addresses. The
addresses are specified in the decimal form (e.g. 130.92.64.4). If digits are missing they are considered as
wildcards, thus 130.92 would be equivalent to 130.92.0.0/16. The third field specifies what kind of policy
this user is going to expect. It thus says what type of customer this is. The forth field is optional. It contains
a space separated list of privileged service numbers to which that customer has access.

Policies. The policy object describes e.g. if the user must authenticate or if it is a super user and the
priority of his/her agent. Most importantly, it holds the filter that regulates which traffic this user’s agent
is able to see (seenode/Policy.java). The policy object for an agent is created during runtime by a
policy generator (subclass ofnode/PolicyGenerator.java). A policy generator represents a policy
group (a user type; thus the user database contains for each user the name of a policy generator). There are
the folowing policy generators (feel free to implement new ones):

• node/SuperPolicyGen.java . For super users.

• node/CustomerPolicyGen.java . For regular customers.

6

• node/AnonymousUserPolicyGen.java . For customers that want to stay anonymous (do not
authenticate). These kind of users have restricted rights (e.g. in filtering).

• node/TestPolicyGen.java . Like customer the policy generator but also without mandatory
authentication.

3.2 In-Code Configuration

Not all configuration options are available in the configuration files. The home application for example
does not have a configuration file. Usually, the user can provide the information in the GUI form fields.
Some values, however are within the Java byte-code: You probably need to adapt the values and recompile
these files.

• In homeApplication/ExecutionMessageForm.java : Changepath to the home direc-
tory of your client side application.

• In homeApplication/SDC.java : SettopoPath to where the topology files are.

• In homeApplication/CallBackDisplay.java : setsavePath to where you would like
to save callback results.

• netgui/EndUser.java : adapt the path in theloadImage() method call.

• netgui/Router.java : adapt the variable .

• netgui/.java : adapt the variableimgName andimgSelName .

The configuration of the T-component is also not file based. The Tcpdump-based T-component is
started by scripts that are located inutils/Scripts/ . Usually, these scripts are one-liners that take
most of the parameters as arguments. This also holds true for the PGP scripts which are also located there.
Support of other PGP versions or encryption tools is also possible but then the appropriate Java classes
must be adapted. For that purpose have a look at utils/PGPEncoder263i.java.

For more details about where to configure what, see also the fileconfig/README .

4 Agents

The agents’ code is (obviously) stored at the customer site, in the subdirectory
/my/client/comes/here/ capsule (the directory name is historical and comes from active net-
working).

New agents should go into this directory and should be declared to belong to the capsule package.
Before an agent can be used, it must be compiled. Further, aagentname .names file must be created
that contains all superclass names and all helper class names. This is necessary so that these classes can be
transmitted with the agent.

Note: there’s two kinds of agents: the ones that do not usecallbackand the ones that do. If agents
use the forwarding mechanism, then they cannot use the initial TCP connection for transmitting results.
Instead they must use the call back service of the node.

Here is brief description of each agent in this directory (alphabetical order):

Name: ActiveBWbottleneckAgent
Goal: Compares the consecutive arrival times of packets that match

a hash signature in order to derive the bottleneck bandwidth.
CallBack: no (but there is commented out code to turn it into one).
Abstract: no
Extends: HashAgent

Name: Agent

7

Goal: Interface description
CallBack: no
Abstract: yes
Extends: -

Name: BandwidthAgent
Goal: Calculates current bandwidth usage on an interval basis.
CallBack: no
Abstract: no
Extends: MeterAgent

Name: ConsistencyAgent
Goal: Checks if the IP packets are consistent:

e.g timestamp order, length, checksum.
CallBack: no
Abstract: no
Extends: MeterAgent

Name: DebugAgent
Goal: Sends back every packet copy it receives.
CallBack: no
Abstract: no
Extends: MyAgent

Name: DoSAgent
Goal: To demonstrate a denial-of-service attack against the node.

Various variants are there (in commented form).
CallBack: no
Abstract: no
Extends: -

Name: FastestAgent
Goal: A minimal agent that does nothing. Used for

performance tests.
CallBack: no
Abstract: no
Extends: -

Name: FastSendBackAgent
Goal: As soon as started, this agent sends a single result back.

This is to test the agents ’rtt’.
CallBack: no
Abstract: no
Extends: MyAgent

Name: GrowerAgent
Goal: For each received pckt this agent stores an integer. It thus

grows infinitely (to test memory consumption).
CallBack: no
Abstract: no
Extends: -

Name: HashAgent
Goal: This agent may hash the packet and compare to given bits (1-64).

8

Agents that want to react to specific packets (e.g. generated
by a tool - see application/Trigger.java) inherit from HashAgent.

CallBack: no
Abstract: yes
Extends: MyAgent

Name: KillAgent
Goal: Requests a wakeup call to kill something after it

has been initialized.
CallBack: no
Abstract: yes
Extends: MyAgent

Name: KillAgentsAgent
Goal: Kills all running agents in a node.
CallBack: no (but can be forwarded)
Abstract: no
Extends: KillAgent

Name: KillNodeAgent
Goal: Terminates the node.
CallBack: no (but can be forwarded)
Abstract: no
Extends: KillAgent

Name: MatchCounterAgent
Goal: Counts the number of packets matching a hash.

Testing and tutorial example.
CallBack: no
Abstract: no
Extends: HashAgent

Name: MeterAgent
Goal: This agent defines the interface for agents towards meters.

Meters are accumulators that transform a stream of packets into
an array of results. From the result array the meters also
calculate an accumulation (e.g. the average).
This directory contains a large number of meters that collaborate
with agents (*Meter.java).

CallBack: no
Abstract: yes
Extends: MyAgent

Name: MultiMeterAgent
Goal: Agents that use several meters inherit from this class.
CallBack: no
Abstract: yes
Extends: MeterAgent

Name: MyAgent
Goal: The superclass of basically all agents. Implements some

helper methods for initalization and to call node services.
CallBack: no
Abstract: yes

9

Extends: -

Name: OneWayDelayAgent
Goal: Registers the arrival time of packets that match a signature.

With synced clocks the results of several OneWayDelayAgents can
be compared to derive jitter and one-way delay.

CallBack: yes
Abstract: no
Extends: HashAgent

Name: PassiveBWbottleneckAgent
Goal: Compares the size and arrival time of (any) packets to derive

the local bottleneck bandwidth.
CallBack: no
Abstract: no
Extends: MyAgent

Name: PeekAgent
Goal: Same as the DebugAgent.
CallBack: no
Abstract: no
Extends: MyAgent

Name: PerformanceAgent
Goal: Uses a BandwidthMeter to accumulate x packets and send their

bandwidth consumption.
CallBack: no
Abstract: no
Extends: MeterAgent

Name: PerformanceAgentD
Goal: Like PerformanceAgent, but opens an own connection (forwarding).
CallBack: yes
Abstract: no
Extends: MeterAgent

Name: PingListenerAgent
Goal: Monitors pings (icmp rfc 792). Matches requests to replies,

accounts arrival times. Derives packet anomalies
(reordering, loss, duplication).
Calculates jitter on the assumptions that pings were sent regularly.

CallBack: yes
Abstract: no
Extends: MyAgent

Name: TestAgent
Goal: Like DebugAgent. Contains also a number of (commented) statements

to trigger a security exception.
CallBack: yes
Abstract: no
Extends: -

Name: TriggerAgent
Goal: Wraps any other agent and starts it once a packet (trigger) matches

10

a given hash.
CallBack: no
Abstract: no
Extends: HashAgent

Name: VPNAgent
Goal: Validates the encryption of VPN packets and also measures the bandwidth

consumption on an interval basis (using the appropriate meters).
CallBack: no
Abstract: no
Extends: MultiMeterAgent

5 Use Cases

In this section we use some of the above agents in order to learn about the functionality of CSM. Just follow
these tutorial-style steps to encounter implemented CSM functionalities.

5.1 Preparation

• Install CSM as described in section2 (without starting the programs).

• Go to the topology subdirectory and create a neighbor lookup file and a name lookup file, or adapt
an existing one. The format of these files is described in section3.1. Note, that when you want to
use PGP, then the user and node IDs must exist in your PGP key ring (simply create new names and
keys for these IDs - trypgp -h).

• Adapt theconfig/default file so that it uses your topology files. Adapt theNODE_IDand the
PASSPHRASEattribute (so that they match your PGP key ring).

5.2 Demo I: One Node, One Agent

In this scenario we run one node and monitor test traffic that comes from a file of from a dummy T-
component with a couple of simple agents.

• Start the CSM node (java node.Node).

• Start (in a separate shell) the home application (java homeApplication.SDC) and perform
the following things:

– Press on the query button. You will get a form. Enter the receiver ID that corresponds to the
node that you just have started.

– In case you changed the user database, you may also need to enter another sender ID.

– The encoding field lets you select two cryptographic options or plain text.

– Selecting the crypto stuff helps you check if your PGP installation was done right.

– There is only point-to-point forwarding for queries so you basically can’t select another for-
warding option.

– There are six query types. These are described in chapter 5.1.5 of my thesis [Gün01].

– When you send a query with the send button, there should be a response window popping up
immediately.

• Go back to the main window of the home application.

• Press the send button to get to a form that allows you the transmission of agents.

11

• You see that the top fields of the form are the same as for the query.

• Select the agent:capsule.PeekAgent . You can do so by typing or by browsing the file system.

• This agent does not use callbacks, so don’t press that switch.

• Then there are a couple of fields that allow you to compose a filter to be used by the agent. Note
the wildcard character ’* ’ (not working for IP addresses, though). IP addresses can be entered the
same way as in the node lookup file. Note, that for all filter fields but the last two you can enter
several numbers (separated by blanks). The packet length field trims the original sniffed packets
to that length (e.g. if you just want to get packet headers). The ’number of packet’ field lets you
select the number of packets that the agent wants to examine. For the given agent set this field to
1. After you have entered something, don’t forget to press <return> (else your entry is not used).
If you entered rubbish, the field will show it. Note, that the filter is not used when sniffing from
a T-component dummy or a test file (only when sniffing with Tcpdump or with the t-bone). You
can easily turn filtering on by uncommenting the appropriate line in therun() method of class
node.AgentWrapper.java . But then be aware that the generated test traffic (or the one on file)
will probably not match the filter and your agents won’t see a thing.

• Send the selected Peek agent by pressing the send button.

• All this agent does is to send a copy of the monitored packet backs to the home application. A
window will pop up and display the packet. You can display the packet in different graphical and
textual styles. Try it!

• Now select acapsule.BandwidthAgent . This one measures the throughput on an interval
basis.

• Set the number of packets to 100 packets.

• Send the agent and watch the result. This is the dummy traffic that is being monitored. If you want to
change the dummy traffic source, have a look atnode/T_ComponentDummy.java in the server
installation. A simple way to increase the traffic is by changing theT_DUMMY_INTERVALattribute
in the node configuration file.

Now we have a look at the VPN agent which measures the throughput on a VPN tunnel and performs
a crypto check. It will immediately balk when the dummy traffic is used, because it is not encrypted. We
will now use a T-component that reads from a test file.

• Adapt theconfig/default file so, that the testfileahEsp3000x1024.tcpdump.output is
used. Inspect this file and learn that it is a Tcpdump output of IPSec tunnel traffic.

• (Re-)Start the node.

• Send thecapsule.VPNAgent to the node.

• The home application will display the agent’s results. The agent measures the throughput of the
packets (not the throughput now, but the one that was seen when the testfile was generated). Some
packets (it should be 2 percent of them) will fail the crypto test. When that happens the agent sends
the packet back and terminates.

5.3 Demo II: Security

Use the dummy T-component or a test file for these tests.

• Try to send an agent with the sender ID set to a customer (a user withCustomerPolicyGen in
its user database entry). The node will complain that you must authenticate.

• Thus, select one of the cryptographically protected encoding schemes when sending the agent.

12

• Now, have a look at the agentcapsule/DoSAgent.java . There are a number of (commented)
denial-of-service attacks implemented in that agent.

• Uncomment what you like and send the agent to see the resource control.

• Thecapsule/GrowerAgent.java gradually increases its memory consumption. Observe how
the resource controller will terminate it after a while.

5.4 Demo III: Distribution, Forwarding and Callbacks

In this scenario we use T-component dummies. We will set up a scenario with several nodes at the same
time. Thus, you need to plan on which machine to run which node. You have to fill in this information into
the node lookup file (see section3.1.2) and into the neighbor lookup file (see section3.1.3). It is possible
to run more than one node on one machine, but you must carefully avoid that a port number is used more
than once. Two of the ports are declared in the node lookup file, but the ports for their T-components are
declared in the node configuration files (theT_SERVER_PORTattribute). Be aware, that the latter attribute
only describe the lowest number of arangeof ports, going up toT_SERVER_PORT+MAX_AGENTS.

In the provided topology subdirectory you will find the filesnodes.global.config andneigh-
bor.global.config which can help you as an example. They define the scenario as depicted in figure
2. Each of the four nodes use their own configuration file provided in theconfig subdirectory. We use
the Unix shell scriptutils/Scripts/multipleNodeScenario to start the nodes in the appropriate
machines. The script uses yet another script calledstartAnode . Note, how this script starts the nodes
with an argument. The argument composes of the DNS name and the port to be used, but it is mainly used
to point to the node configuration file that this particular node must use. Make sure to adapt these shell
scripts (especially the paths they use). Also, the node configuration files should be in the place and have the
name that the script expects them to:/my/server/comes/here/ config/ DNSname:port . Make
sure the paths of these configuration files are valid and adapt these files to your likings. Note, that the
output of the nodes is redirected to files in theLogs/ directory. Make sure this directory exists and is
empty.

RVS

IAM

SpeedyAsterix

Milou

130.92.65.x

CUI

TIK

130.92.64.x

Figure 2: The multi-node scenario.

Bhew, now we are more or less ready to go. If you have forgotten some paths, then the following steps
will reveal that for sure.

• Start the nodes with the script.

• Start the home application.

13

• Test if the remote nodes are alive by querying them (enter the desired receiver node ID in the form).
Topology problems can be revealed by query the routing information.

• If something goes wrong, make sure you stop all nodes before retrying it.

• Open the agent sending dialog.

• Chose a sender ID. The user should be at least a customer (compare with the user database), so it can
authenticate (which is mandatory for forwarding).

• Select an encoding option (SIGN_ ONLYor PGP- both authenticate the sender).

• Set forwarding toBroadcast .

• Select thecapsule.PerformanceAgentD . This is a throughput measuring agent with callback
capabilities. Callback is necessary, because we are going to use forwarding.

• Select thestart callback serverswitch. The GUI is then going to ask you what is measured and in
what range the measured values will be (for convenient display). Select Min=0, Max=1.5.

• Send the agent. Fill in the passphrase when asked and observe the new popup window.

• As the agent is forwarded the home application learns about the network topology and displays it.

• You can rearrange the display location of the routers and of the end user hosts by drag-and-dropping
with the mouse.

• If the recordswitch is on (default), then the home application stores all results. To save the results
to disk you have to select a router of interest and press on thesavebutton. The results are saved on a
file as indicated in the text field. The resulting file is formatted in gnuplot style.

• Try now sending an agent withHop-by-Hop forwarding. There, you need to specify an IP address
of a customer as a target. The agent will first be sent to the receiver node. From there on it will
be forwarded to each node on the path towards the target IP. To get a valid target IP inspect your
node lookup file (there, also the user IDs and IPs are listed). With the network of figure2 try
for example to send the agent to<admin@cui.unige.ch> and have it hop-by-hop forwarded
towards 130.92.64.4 (a user that is connected to the node<admin@tik.ethz.ch> .

• A convenient way to stop the distributed nodes is to broadcast acapsule/KillNode.java
agent. This agent uses a privileged service, so you need to authenticate as a super-user.

6 Live/Real Monitoring

Up to now, we have not performed any live monitoring. Live monitoring involves T-components at strategic
places that have the access rights to sniff traffic. These components are completely outside of the Java
implementation parts of CSM.

6.1 The Tcpdump T-Component

This component supports live sniffing on a real network. Here is how you can set up such a T-component.

• Plug a Linux machine to a network to be sniffed. The machine should have Tcpdump installed.

• Install the T-component into the directory of your choice. The archivet-component.tgz con-
tains two subarchives:

– linux-fast.tgz . This is the version you will probably prefer. It uses the raw output of
tcpdump and is thus faster than the second choice, which uses the human readable output:

14

– linux-HumanReadable.tgz . Note, that to use this one here, you need theSender.o of
the first archive.

• Recompile the T-component if needed.

• Adapt the scripttComponent (a UNIX shell script that pipes the Tcpdump output into a C++
program that parses the output and sends it to the CSM node).

• Go back to the Java provider installation site.

• Adapt the node configuration file: Provide the DNS of the machine running the T-component in
T_NAME. Make sure, that no testfile is provided and that the virtual router attribute is set to false.

• Adapt the paths of the scriptutils/Scripts/start_T_remote_live

• Start the node and try to send acapsule/PeekAgent.java

• Don’t forget that (1) You need to generate traffic that (2) mtaches the filter of your agent and (3)
matches the filter policy of the owner of the agent (see also my thesis section 4.3.3).

6.2 Sniffing on Virtual Routers

First you need to establish a network with virtual routers (VR). On each virtual router thet-bone program
should be running. This document does not describe how to configure VRs. We refer to the author Florian
Baumgartner (baumgart@iam.unibe.ch). A little information can be found inDoku/vrQuickHowTo.txt .

To tell a CSM node that it should monitor a VR you need to set theT_IS_VIRTUAL attribute to true.
You also have to set theT_NAMEattribute to the DNS name of the machine that hosts the virtual router (not
to the IP of the VR itself!). The CSM node will contact thet-bone on a port which is given by: The node’s
server port (the forth entry in the node lookup table) plus theclientserver.ProtoConsts.VR_PORT_OFFSET
(set to 1000). Thus, when you start the t-bone in a VR you need to consider this portnumbert-bone -p
portnr (typically 1998+1000=2998).

References

[BB00] Florian Baumgartner and Torsten Braun. Virtual routers: A novel approach for qos performance
evaluation. InQofIS’2000, September 2000.

[Gün01] Manuel Günter. Managment of Multi-Provider Internet Services with Software Agents. PhD
thesis, University of Berne, June 2001.

[JLM89] V. Jacobson, C. Leres, and S. McCanne. Tcpdump. available via ftp to: ftp.ee.lbl.gov, June 1989.

[Sun] Sun Microsystems. The source for java technology. http://java.sun.com/.

15

	Overview
	Organization of the Java Source Code

	Installation
	Software Prerequisites
	Step-by-step Installation
	The Provider Side (Server)
	The Customer Side (Client)

	Configuration
	Configuration Files
	The Node Configuration File
	The Node Lookup File
	The Neighbor Lookup File
	The User Database

	In-Code Configuration

	Agents
	Use Cases
	Preparation
	Demo I: One Node, One Agent
	Demo II: Security
	Demo III: Distribution, Forwarding and Callbacks

	Live/Real Monitoring
	The Tcpdump T-Component
	Sniffing on Virtual Routers

